Gum Arabic-based three-dimensional printed hydrogel for customizable sensors.

Int J Biol Macromol

School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Polymeric and Soft Materials Laboratory, School of Chemical Engineering, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China. Electronic address:

Published: January 2024

Most three-dimensional (3D) printed hydrogel exhibit non-idealized rheological properties in the process of direct ink writing and complicated curing. Therefore, accurate writability and convenient curing for 3D printed hydrogel remain a challenge. In this paper, we developed a typical 3D printed hydrogel which realized direct ink writing (DIW) at temperatures similar to human body. Silicon dioxide (SiO) and Gum Arabic (GA) formed the Bingham fluid to ensure shape stability. The rapid initiation system of potassium persulfat (KPS) and N,N,N',N' -tetramethylethylenediamine (TMEDA) allowed the 3D printed hydrogel precursor solution to transiently form a hydrophobic conjoined cross-linking network structure of acrylamide (AAM) and lauryl methacrylate (LMA) after printing, resulting in preferable mechanical properties. Hydrogel precursor solution showed better rheological properties with the nature of Bingham fluids, and achieved transient cross-linking at 30 °C for 10 s in the rheological test. A variety of 3D printed hydrogel with individual strain sensing properties are prepared as customizable sensor that could monitor significant strain signals within 0-20 % strain with high sensitivity. Moreover, they were discovered excellent temperature sensitivity over a wide operating range (0-80 °C). The 3D printing hydrogel sensors were expected to have broad application prospects in flexible wearable devices and medical monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.128072DOI Listing

Publication Analysis

Top Keywords

printed hydrogel
24
three-dimensional printed
8
hydrogel
8
rheological properties
8
direct ink
8
ink writing
8
hydrogel precursor
8
precursor solution
8
printed
6
gum arabic-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!