Battery-sensing-based all-in-one pressure sensors are generally successfully constructed by mimicking the information transfer of living organisms and the sensing behavior of human skin, possessing features such as low energy consumption and detection of low/high-frequency mechanical signals. To design high-performance all-in-one pressure sensors, a deeper understanding of the intrinsic mechanisms of such sensors is required. Here, a mechanical-electrical conversion mechanism based on pressure-modulated nanoconfined channels is proposed. Then, the mechanism of ion accelerated transport in graphene oxide (GO) nanoconfined channels under pressure is revealed by density functional theory (DFT) calculation. Based on this mechanism, a proton battery-type self-powered pressure sensor MoO /GO /activated carbon (AC) is designed with an open-circuit voltage stabilization of 0.648 V, an ultrafast response/recovery time of 86.0 ms/93.0 ms, pressure detection ranges of up to 60.0 kPa, and excellent static/dynamic pressure response. In addition, the one-piece device design enables self-supply, miniaturization, and charge/discharge reuse, showing application potential in wearable electronics, health monitoring, and other fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202308795 | DOI Listing |
J Chem Phys
December 2024
State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
Comprehending the flow dynamics of ionic solutions within nanoconfined spaces is imperative for diverse applications encompassing desalination, nanofiltration, energy storage, and electrochemical devices. When the confinement space is further reduced to 1 nm (Ångstrom scale), monolayer ionic solutions will emerge. In this regime, ions not only have the ability to influence water properties such as viscosity but also primarily modify the interactions and corresponding slip length (or friction coefficient) between the solution and wall.
View Article and Find Full Text PDFNat Commun
November 2024
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, PR China.
Two-dimensional (2D) nanofluidic channels with confined transport pathways and abundant surface functional groups have been extensively investigated to achieve osmotic energy harvesting. However, solely relying on intrinsic interlayer channels results in insufficient permeability, thereby limiting the output power densities, which poses a significant challenge to the widespread application of these materials. Herein, we present a nanoconfined sacrificial template (NST) strategy to create a crafted channel structure, termed as Turing-type nanochannels, within the membrane.
View Article and Find Full Text PDFNano Lett
December 2024
Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
Nanoconfined water exhibits astonishing properties that offer new opportunities in physics, biology and technology like energy-storage applications. Here we study such nanoconfined water using molecular dynamics simulations to elucidate the structure and dynamics of water monolayers in graphene-based slit pores. The significant population of dangling (or free) O-H bonds pointing toward the two confining walls, leads to topological frustration in the hydrogen bond network.
View Article and Find Full Text PDFAdv Sci (Weinh)
November 2024
Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.
ACS Nano
November 2024
Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710000, China.
The exceptional selectivity and responsive ion transport in biological channels inspire technology breakthrough in energy, environmental, and resource sectors. However, existing nanofluidic systems with a high photothermal conversion efficiency often exhibit excessive thermal conductivity, which impedes the creation of effective temperature gradients and results in a low ion transport efficiency. In this study, a strategy based on the synchronic stacking of metallic and nonmetallic two-dimensional (2D) nanosheets was presented to construct heterogeneous nanofluidic channels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!