Magnetic exchange coupling () between different spin centers plays a crucial role in molecule-based magnetic materials. Direct exchange coupling between an organic radical and a metal is frequently stronger than superexchange through diamagnetic ligands, and the strategy of using organic radicals to engender desirable magnetic properties has been an area of active investigation. Despite significant advances and exciting bulk properties, the magnitude of for radical linkers bridging paramagnetic centers is still difficult to rationally predict. It is thus important to elucidate the features of organic radicals that govern this parameter. Here, we measure for the tetrathiafulvalene-tetrathiolate radical (TTFtt) in a dinuclear Mn(II) complex. Magnetometry studies show that the antiferromagnetic coupling in this complex is much weaker than that in related Mn(II)-radical compounds, in contrast to what might be expected for the S-based chelating donor atoms of TTFtt. Experimental and computational analyses suggest that this small coupling may be attributed to poor overlap between Mn- and TTFtt-based magnetic orbitals coupled with insignificant spin density on the coordinating S-atoms. These factors override any expected increase in from the comparatively strong S-donors. This work elucidates the magnetic coupling properties of the TTFtt radical for the first time and also demonstrates how multiple competing factors must be considered in rationally designing organic radical ligands for molecular-based magnetic compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.3c02534 | DOI Listing |
Neurosci Biobehav Rev
December 2024
Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas; Department of Psychology, University of Nevada, Las Vegas.
This review highlights the crucial role of neuroelectrophysiology in illuminating the mechanisms underlying Alzheimer's disease (AD) pathogenesis and progression, emphasizing its potential to inform the development of effective treatments. Electrophysiological techniques provide unparalleled precision in exploring the intricate networks affected by AD, offering insights into the synaptic dysfunction, network alterations, and oscillatory abnormalities that characterize the disease. We discuss a range of electrophysiological methods, from non-invasive clinical techniques like electroencephalography and magnetoencephalography to invasive recordings in animal models.
View Article and Find Full Text PDFJ Chromatogr A
December 2024
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China. Electronic address:
A novel magnetic mesoporous fluorinated metal-organic framework material (FeO@MIP-206-F) has been synthesized specifically for application as an adsorbent for perfluoroalkyl carboxylic acids (PFCAs) extraction by magnetic solid-phase extraction (MSPE). The carefully designed FeO@MIP-206-F material features an appropriate porosity, open metal sites of Zr, and functional groups (fluorine and amino) conducive to the adsorption process. The distinctive architecture of the material endows it with exceptional extraction capabilities for PFCAs.
View Article and Find Full Text PDFInorg Chem
December 2024
School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
The interplay between quantum effects from magnetic frustration, low-dimensionality, spin-orbit coupling, and crystal electric field in rare-earth materials leads to nontrivial ground states with unusual magnetic excitations. Here, we investigate YbTaO, which hosts a buckled square net of Yb ions with = 1/2 moments. The observed Curie-Weiss temperature is about -1 K, implying an antiferromagnetic coupling between the Yb moments.
View Article and Find Full Text PDFSchizophr Bull
December 2024
Department of Psychiatry, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
Background And Hypothesis: Respective abnormal structural connectivity (SC) and functional connectivity (FC) have been reported in individuals with schizophrenia. However, transmodal associations between SC and FC following antipsychotic treatment, especially in female schizophrenia, remain unclear. We hypothesized that increased SC-FC coupling may be found in female schizophrenia, and could be normalized after antipsychotic treatment.
View Article and Find Full Text PDFBMC Neurosci
December 2024
The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, P.R. China.
Background: Parkinson's disease (PD) is a progressive neurodegenerative disease associated with functional and structural alterations beyond the nigrostriatal dopamine projection. However, the structural-functional (SC-FC) coupling changes in combination with subcortical regions at the network level are rarely investigated in PD.
Methods: SC-FC coupling networks were systematically constructed using the structural connectivity obtained by diffusion tensor imaging and the functional connectivity obtained by resting-state functional magnetic resonance imaging in 53 PD and 72 age- and sex-matched healthy controls (HCs).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!