Multifunction superhydrophobic coatings that facilitate water harvesting are attractive for addressing the daunting water crisis, yet, they are caught in a double bind when their durability is considered, as durable coatings will require both tough micro-textures to survive concentrated stress and high-surface-energy chemistry to form chemical bonds within the matrix. To date, a universal bulk-phase coating that combines multifunctionality, ultra-durability, and fabrication feasibility remains challenging. Here, a binary cooperative cell design is reported that can solve the contradiction between the multifunctionality and durability requirements of superhydrophobic coatings. In this strategy, mechanochemically tailored cells with releasable nanoseeds are infused in the common matrix, which serves both as a versatile chemical bridge to achieve strong bonds within the coating building blocks, and as an instantaneous self-repairing generator to improve durability. Such a strategy significantly boosted the wear resistance and outdoor stability of the coatings by over 30-100 and 18 folds, respectively, compared with conventional coatings. The coating is applied to the sustainable application, i.e., enhancing the water collection efficiency by at least 1000% even after harsh abrasion. The strategy will broaden the vision in handling the dilemma properties among functional coatings and promote the application of superhydrophobic coatings in extreme environments.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202307561DOI Listing

Publication Analysis

Top Keywords

superhydrophobic coatings
16
coatings
8
binary cooperative
8
water harvesting
8
damage tolerance
4
superhydrophobic
4
tolerance superhydrophobic
4
coatings binary
4
cooperative cells
4
water
4

Similar Publications

Superhydrophobic Nanocoatings Fabricated by Materials with Low Young's Contact Angle.

Langmuir

January 2025

State Key Laboratory for Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, China.

To achieve superhydrophobicity with an apparent contact angle (θ*) greater than 150° on rough surfaces, materials with a high Young's contact angle (θ > 90°) are commonly utilized. However, achieving superhydrophobicity with θ < 90° materials without specific auxiliary designs faces unknown challenges. Here, we develop a novel superhydrophobic nanocoating with θ* of ∼155° sprayed by an ethanol suspension only composed of bisphenol A epoxy resin (EPA) with a low θ of ∼70° and hydrophilic SiO nanoparticles.

View Article and Find Full Text PDF

The results of an investigation of an impact of the structure of recently synthesized bis(trifluoromethylsulfonyl)imide mono- and dicationic ionic liquids on their properties and behavior as lubricants for slippery liquid infused superhydrophobic coatings are presented for a wide temperature range. In this study, a new approach based on monitoring the surface tension of a liquid sessile droplet on top of a coating was exploited for the analysis of the evolution of the coating properties in prolonged contact with the liquid. It was found that the continuous contact with water flow results in slippery property degradation according to two different scenarios.

View Article and Find Full Text PDF

With increasing energy demands, the need for coating materials with exceptional superhydrophobic properties has grown substantially. However, the widespread use of fluorinated compounds, solvents, and polymer-based synthetic materials has led to heightened levels of microplastics and pollutants. Here, we used a self-curing, solvent-free, and recyclable polyester polyol polymer material combined with (5 and 6.

View Article and Find Full Text PDF

Superhydrophobic surfaces have attracted tremendous attention due to their intriguing lotus-leaf-like water-repelling phenomenon and wide applications, however, most superhydrophobic coatings are prepared with environmentally unfriendly organic solvents and suffer from poor mechanical strength. To solve these issues, waterborne recoatable superhydrophobic (WRSH) coatings are developed based on a novel self-synthesized water-soluble fluorinated acrylic polymer and hydrophobic modified silica nanoparticles. The trade-off between waterborne and superhydrophobicity is well mediated by protonation and deprotonation of the fluorinated acrylic polymer.

View Article and Find Full Text PDF

A Multifunctional Synergistic Solar-Driven Interfacial Evaporator for Desalination and Photocatalytic Degradation.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China.

The scarcity of freshwater resources and the treatment of dye wastewater have emerged as unavoidable challenges that need to be addressed. The combination of solar-driven interfacial evaporation, photocatalytic degradation, and superhydrophobic surface provides an effective approach for seawater desalination and the treatment of organic dyes. In this study, we fabricated a multifunctional synergistic solar evaporator by depositing cupric oxide nanoparticles onto polypyrrole (PPy) coating and subsequently modified it with a hydrophobic agent successfully.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!