High-performance nanosized optoelectronic devices based on van der Waals (vdW) heterostructures have significant potential for use in a variety of applications. However, the investigation of nanoribbon-based vdW heterostructures are still mostly unexplored. In this study, based on first-principles calculations, we demonstrate that a SbS/SbSe vdW heterostructure, which is formed by isostructural nanoribbons of stibnite (SbS) and antimonselite (SbSe), possesses a direct band gap with a typical type-II band alignment, which is suitable for optoelectronics and solar energy conversion. Optical absorption spectra show broad profiles in the visible and UV ranges for all of the studied configurations, indicating their suitability for photodevices. Additionally, in 1D nanoribbons, we see sharp peaks corresponding to strongly bound excitons in a fashion similar to that of other quasi-1D systems. The SbS/SbSe heterostructure is predicted to exhibit a remarkable power conversion efficiency (PCE) of 28.2%, positioning it competitively alongside other extensively studied two-dimensional (2D) heterostructures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c10868 | DOI Listing |
Small Methods
January 2025
Wide-bandgap semiconductors (WBGS) with energy bandgaps larger than 3.4 eV for GaN and 3.2 eV for SiC have gained attention for their superior electrical and thermal properties, which enable high-power, high-frequency, and harsh-environment devices beyond the capabilities of conventional semiconductors.
View Article and Find Full Text PDFACS Nano
January 2025
School of Chemistry, Beihang University, Beijing 100191, China.
Two-dimensional (2D) ferromagnetic materials are subjects of intense research owing to their intriguing physicochemical properties, which hold great potential for fundamental research and spintronic applications. Specifically, 2D van der Waals (vdW) ferromagnetic materials retain both structural integrity and chemical stability even at the monolayer level. Moreover, due to their atomic thickness, these materials can be easily manipulated by stacking them with other 2D vdW ferroic and nonferroic materials, enabling precise control over their physical properties and expanding their functional applications.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China.
Unipolar barrier architecture is designed to enhance the photodetector's sensitivity by inducing highly asymmetrical barriers, a higher barrier for blocking majority carriers to depressing dark current, and a low minority carrier barrier without impeding the photocurrent flow through the channel. Depressed dark current without block photocurrent is highly desired for uncooled Long-wave infrared (LWIR) photodetection, which can enhance the sensitivity of the photodetector. Here, an excellent unipolar barrier photodetector based on multi-layer (ML) graphene (G) is developed, WSe, and PtSe (G-WSe-PtSe) van der Waals (vdW) heterostructure, in which extremely low dark current of 1.
View Article and Find Full Text PDFACS Nano
January 2025
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
The demand for low-power devices is on the rise as semiconductor engineering approaches the quantum limit, and quantum computing continues to advance. Two-dimensional (2D) superconductors, thanks to their rich physical properties, hold significant promise for both fundamental physics and potential applications in superconducting integrated circuits and quantum computation. Here, we report a gate-controlled superconducting switch in GaSe/NbSe van der Waals (vdW) heterostructure.
View Article and Find Full Text PDFRSC Adv
December 2024
Chongqing Key Laboratory of Micro & Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University Chongqing 400715 China
Heterostructures can efficiently modulate the bandgap of semiconductors and enhance the separation of photocarriers, thereby enhancing the performance of optoelectronic devices. Herein, we design an InS/ZnInS van der Waals (vdW) heterostructure and investigate its electronic and photovoltaic properties using first principles calculation. Compared to its individual monolayers, the InS/ZnInS heterostructure not only possesses a smaller band gap of 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!