Energetically More Stable Singlet Cyclopentane-1,3-diyl Diradical with π-Single Bonding Character than the Corresponding σ-Single Bonded Compound.

J Am Chem Soc

Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Hiroshima, Japan.

Published: December 2023

Carbon-carbon σ-single bonds are crucial for constructing molecules like ethane derivatives (RC-CR), which are composed of tetrahedral four-coordinate carbons. Molecular functions, such as light absorption or emission, originate from the π-bonds existing in ethylene derivatives (RC═CR). In this study, a relatively stable cyclopentane-1,3-diyl species with π-single bonding system (C-π-C) with planar four-coordinate carbons is constructed. This diradicaloid is energetically more stable than the corresponding σ-single bonding system. The π-electron single bonding system provides deeper insights into the chemical bonding and the physical properties derived from the small energy gaps between the bonding and antibonding molecular orbitals.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.3c10971DOI Listing

Publication Analysis

Top Keywords

bonding system
12
energetically stable
8
π-single bonding
8
corresponding σ-single
8
four-coordinate carbons
8
bonding
6
stable singlet
4
singlet cyclopentane-13-diyl
4
cyclopentane-13-diyl diradical
4
diradical π-single
4

Similar Publications

Polarization Upends Convention: Halogen Bonding Propensities of Main Group Halides.

J Phys Chem A

January 2025

Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23173, United States.

The propensities for sigma hole bonding by halogen atoms bonded to central atoms below period 2 in the periodic table remain to be systematically examined. Using iodine as our reference halogen atom, a comprehensive analysis of the tendencies for halogen and other forms of significant sigma hole bonding by simple compounds of main group atoms from H to At is accomplished. An examination of the structure and bonding of complexes formed by those iodine-substituted main group compounds and sigma donating bases (ammonia and trimethylamine) is performed to probe the viability of halogen bonding by heavy main group RM-I compounds in particular, given the historic focus on period 2.

View Article and Find Full Text PDF

Development of efficient drug delivery systems remains a critical challenge in pharmaceutical applications, necessitating novel approaches to improve drug loading and release profiles. In this study, a novel method is presented for fabricating crosslinked polydopamine particles (XPDPs) using a water/water Pickering emulsion system. The emulsion is composed of poly(ethylene glycol) and dextran, stabilized by polydopamine (PDA) particles.

View Article and Find Full Text PDF

Disruption of cholinesterases and, as a consequence, increased levels of acetylcholine lead to serious disturbances in the functioning of the nervous system, including death. The need for rapid administration of an antidote to restore esterase activity is critical, but practical implementation of this is often difficult. One promising solution may be the development of antidote delivery systems that will release the drug only when acetylcholine levels are elevated.

View Article and Find Full Text PDF

Objective This in vitro study evaluated the impact of different time intervals on the color stability of glass ionomer cement (GIC) and composite materials bonded to teeth treated with silver diamine fluoride (SDF). Specifically, the study sought to determine if immediate or delayed application of these restorative materials affects the degree of staining caused by SDF. Materials and methods Twenty-eight extracted primary molars with cavitated lesions were randomly divided into four groups, each comprising seven samples.

View Article and Find Full Text PDF

Ligand Design with Accelerated Disulfide Formation with Serum Albumin to Extend Blood Retention.

ACS Med Chem Lett

January 2025

Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.

We proposed a novel ligand for the interaction with human serum albumin (HSA) to extend the blood half-life of small molecular weight therapeutics. The ligand features an alkyl chain and an activated disulfide to allow binding to the hydrophobic pockets of HSA and the formation of disulfide to Cys34 of HSA, thereby minimizing the initial renal clearance. The dual nature of the ligand-HSA bonding was expected to give the ligand long blood retention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!