Mammalian oocyte maturation relies on mitochondrial ATP production, but this can lead to damaging reactive oxygen species (ROS). SIRT3, a mitochondrial sirtuin, plays a critical role in regulating mitochondrial redox balance in mouse oocytes under stress; however, its specific roles in porcine oocytes remain unclear. In this study, we utilized the SIRT3 inhibitor 3-TYP to investigate SIRT3's importance in porcine oocyte maturation. Our findings revealed that SIRT3 is expressed in porcine oocytes and its inhibition leads to maturation failure. This was evident through reduced polar body extrusion, arrested cell cycle, as well as disrupted spindle organization and actin distribution. Furthermore, SIRT3 inhibition resulted in a decrease in mitochondrial DNA copy numbers, disruption of mitochondrial membrane potential, and reduced ATP levels, all indicating impaired mitochondrial function in porcine oocytes. Additionally, the primary source of damaged mitochondria was associated with decreased levels of deacetylated superoxide dismutase 2 (SOD2) after SIRT3 inhibition, which led to ROS accumulation and oxidative stress-induced apoptosis. Taken together, our results suggest that SIRT3 regulates the levels of deacetylated SOD2 to maintain redox balance and preserve mitochondrial function during porcine oocyte maturation, with potential implications for improving pig reproduction.

Download full-text PDF

Source
http://dx.doi.org/10.1093/micmic/ozad127DOI Listing

Publication Analysis

Top Keywords

oocyte maturation
16
levels deacetylated
12
porcine oocytes
12
sirt3 regulates
8
regulates levels
8
deacetylated sod2
8
mitochondrial
8
redox balance
8
porcine oocyte
8
sirt3 inhibition
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!