Conventional microdiscectomy treatment for intervertebral disc herniation alleviates pain but does not repair the annulus fibrosus, resulting in a high incidence of recurrent herniation and persistent dysfunction. The lack of repair and the acute inflammation that arise after injury can further compromise the disc and result in disc-wide degeneration in the long term. To address this clinical need, we developed tension-activated repair patches (TARPs) for annulus fibrosus repair and local delivery of the anti-inflammatory factor anakinra (a recombinant interleukin-1 receptor antagonist). TARPs transmit physiologic strain to mechanically activated microcapsules embedded within the patch, which release encapsulated bioactive molecules in direct response to spinal loading. Mechanically activated microcapsules carrying anakinra were loaded into TARPs, and the effects of TARP-mediated annular repair and anakinra delivery were evaluated in a goat model of annular injury in the cervical spine. TARPs integrated with native tissue and provided structural reinforcement at the injury site that prevented aberrant disc-wide remodeling resulting from detensioning of the annular fibrosus. The delivery of anakinra by TARP implantation increased matrix deposition and retention at the injury site and improved maintenance of disc extracellular matrix. Anakinra delivery additionally attenuated the inflammatory response associated with TARP implantation, decreasing osteolysis in adjacent vertebrae and preserving disc cellularity and matrix organization throughout the annulus fibrosus. These results demonstrate the therapeutic potential of TARPs for the treatment of intervertebral disc herniation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10812087PMC
http://dx.doi.org/10.1126/scitranslmed.adf1690DOI Listing

Publication Analysis

Top Keywords

intervertebral disc
12
disc herniation
12
annulus fibrosus
12
treatment intervertebral
8
mechanically activated
8
activated microcapsules
8
anakinra delivery
8
injury site
8
tarp implantation
8
repair
6

Similar Publications

Clinical characteristics associated with cervical hydrated nucleus pulposus extrusion in dogs.

J Vet Intern Med

January 2025

Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA.

Background: Clinical characteristics of cervical hydrated nucleus pulposus extrusion (HNPE) in dogs compared to other causes of cervical myelopathy are not well described.

Hypothesis/objectives: To evaluate for clinical characteristics and mechanical ventilation likelihood associated with HNPE compared to other causes of cervical myelopathy.

Animals: Three hundred seventy-seven client-owned dogs from 2010 to 2022.

View Article and Find Full Text PDF

Evaluation of Cartilage-Like Matrix Formation in a Nucleus Pulposus-Derived Cartilage Analog Scaffold.

J Biomed Mater Res B Appl Biomater

January 2025

The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.

The formation of fibrocartilage in microfracture (MFX) severely limits its long-term outlook. There is consensus in the scientific community that the placement of an appropriate scaffold in the MFX defect site can promote hyaline cartilage formation and improve therapeutic benefit. Accordingly, in this work, a novel natural biomaterial-the cartilage analog (CA)-which met criteria favorable for chondrogenesis, was evaluated in vitro to determine its candidacy as a potential MFX scaffold.

View Article and Find Full Text PDF

Objective: The postoperative recovery of patients with lumbar disc herniation (LDH) requires further study. This study aimed to establish and validate a predictive model for functional recovery in patients with LDH and explore associated risk factors.

Method: Patients with LDH undergoing PLIF admitted from January 1, 2018 to December 31, 2022 were included, and patient data were prospectively collected through follow-up.

View Article and Find Full Text PDF
Article Synopsis
  • Scoliosis is identified through Cobb's angle, and this study aims to create a digital twin of the spine to analyze biomechanical stresses and disc degeneration related to idiopathic scoliosis using patient-specific data.
  • A 3D computational model was developed that modifies intervertebral disc properties based on radiological measurements, validated by comparing with patient images; finite element analysis clarified the impact of deformity on spinal biomechanics.
  • The results showed that the model accurately represented thoracic scoliosis and revealed that disc strain increases near the apex, with "type-C" curves at higher risk for herniation compared to "type-S," thereby enhancing understanding of scoliosis and aiding in treatment planning.
View Article and Find Full Text PDF

Validation and the role of PDK4 relevant to ferroptosis in degenerative lumbar disc disease.

J Orthop Surg Res

January 2025

Department of Orthopaedics, Qilu Hospital of Shandong University, No.107, Wenhuaxi Road, Lixia District, Jinan, Shandong Province, 250012, China.

Background: Ferroptosis was involved in the pathogenesis of intervertebral disc degeneration (IVDD). However, the exact mechanism of IVDD associated with ferroptosis still required deeper studies.

Method: The differentially expressed genes (DEGs) in rat lumbar disc tissue between the control and IVDD group treated with IL-1β were detected by RNA sequencing (RNA-seq).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!