Ultrashort light pulses induce rapid deformations of crystalline lattices. In ferroelectrics, lattice deformations couple directly to the polarization, which opens the perspective to modulate the electric polarization on an ultrafast time scale. Here, we report on the temporal and spatial tracking of strain and polar modulation in a single-domain BiFeO thin film by ultrashort light pulses. To map the light-induced deformation of the BiFeO unit cell, we perform time-resolved optical reflectivity and time-resolved x-ray diffraction. We show that an optical femtosecond laser pulse generates not only longitudinal but also shear strains. The longitudinal strain peaks at a large amplitude of 0.6%. The access of both the longitudinal and shear strains enables to quantitatively reconstruct the ultrafast deformation of the unit cell and to infer the corresponding reorientation of the ferroelectric polarization direction in space and time. Our findings open new perspectives for ultrafast manipulation of strain-coupled ferroic orders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10651133PMC
http://dx.doi.org/10.1126/sciadv.adi1160DOI Listing

Publication Analysis

Top Keywords

temporal spatial
8
spatial tracking
8
thin film
8
film ultrashort
8
ultrashort light
8
light pulses
8
unit cell
8
longitudinal shear
8
shear strains
8
ultrafast
4

Similar Publications

Adaptation to drought is one of the most important challenges for agriculture. The root system, and its integration with the soil, is fundamental in conferring drought tolerance. At the same time, it is extremely challenging to study.

View Article and Find Full Text PDF

Background: With the accelerated development of the aging trend in Chinese society, the aging problem has become one of the key factors affecting sustainable economic and social development. Given the importance of controlling carbon emissions for achieving global climate goals and China's economic transformation, studying the spatial and temporal effects of population aging on carbon emissions and their pathways of action is of great significance for formulating low-carbon development strategies adapted to an aging society.

Objective: This paper aims to explore the spatial-temporal effects of population aging on carbon emissions, identify the key pathways through which aging affects carbon emissions, and further explore the variability of these effects across different regions.

View Article and Find Full Text PDF

Among control methods for robotic exoskeletons, biologically inspired control based on central pattern generators (CPGs) offer a promising approach to generate natural and robust walking patterns. Compared to other approaches, like model-based and machine learning-based control, the biologically inspired control provides robustness to perturbations, requires less computational power, and does not need system models or large learning datasets. While it has shown effectiveness, a comprehensive evaluation of its user experience is lacking.

View Article and Find Full Text PDF

Human mobility between different regions is a major factor in large-scale outbreaks of infectious diseases. Deep learning models incorporating infectious disease transmission dynamics for predicting the spread of multi-regional outbreaks due to human mobility have become a hot research topic. In this study, we incorporate the Graph Transformer Neural Network and graph learning mechanisms into a metapopulation SIR model to build a hybrid framework, Metapopulation Graph Transformer Neural Network (M-Graphormer), for high-dimensional parameter estimation and multi-regional epidemic prediction.

View Article and Find Full Text PDF

Motor cortical high-gamma oscillations (60-90 Hz) occur at movement onset and are spatially focused over the contralateral primary motor cortex. Although high-gamma oscillations are widely recognized for their significance in human motor control, their precise function on a cortical level remains elusive. Importantly, their relevance in human stroke pathophysiology is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!