An investigation of social media labeling decisions preceding the 2020 U.S. election.

PLoS One

Stanford Internet Observatory, Stanford University, Stanford, California, United States of America.

Published: November 2023

Since it is difficult to determine whether social media content moderators have assessed particular content, it is hard to evaluate the consistency of their decisions within platforms. We study a dataset of 1,035 posts on Facebook and Twitter to investigate this question. The posts in our sample made 78 misleading claims related to the U.S. 2020 presidential election. These posts were identified by the Election Integrity Partnership, a coalition of civil society groups, and sent to the relevant platforms, where employees confirmed receipt. The platforms labeled some (but not all) of these posts as misleading. For 69% of the misleading claims, Facebook consistently labeled each post that included one of those claims-either always or never adding a label. It inconsistently labeled the remaining 31% of misleading claims. The findings for Twitter are nearly identical: 70% of the claims were labeled consistently, and 30% inconsistently. We investigated these inconsistencies and found that based on publicly available information, most of the platforms' decisions were arbitrary. However, in about a third of the cases we found plausible reasons that could explain the inconsistent labeling, although these reasons may not be aligned with the platforms' stated policies. Our strongest finding is that Twitter was more likely to label posts from verified users, and less likely to label identical content from non-verified users. This study demonstrates how academic-industry collaborations can provide insights into typically opaque content moderation practices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650990PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0289683PLOS

Publication Analysis

Top Keywords

misleading claims
12
social media
8
posts
5
investigation social
4
media labeling
4
labeling decisions
4
decisions preceding
4
preceding 2020
4
2020 election
4
election difficult
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!