Chemical composition and antimicrobial activity of essential oils of two wild olive subspecies L.var. sylvestris and the endemic olive subsp. from Algeria.

Nat Prod Res

Department Plant Biology and Ecology, Faculty of Natural and Life Sciences, Laboratory of Natural Resources Valorization, Ferhat Abbas Sétif 1 University, Sétif, Algeria.

Published: November 2023

Two wild olive subspecies are fixed in this research: L.var. sylvestris and subsp. despite its ecological value, the chemical composition of subsp. oil remains unknown. The samples were harvested from the different geographical area. Gas Chromatography-Mass Spectrometry (GC-MS) and Gas Chromatography-flame-ionization detection (GC-FID) analysis of L. var. sylvestris allowed the identification of 29 compounds oil with Nonanal (11.82%), theaspiranea A (9.81%), 3-hexen-1-ol,benzoate(9.31%) as a major constituents, while in the subspecies of the Saharan region 31 compounds were separated, where α-pinene (16%), β-Ocimene (12.82%), dl-Limonene (8.20%) were the main components. The results of the disc diffusion method showed that the two volatile oils have efficient antibacterial activity but, subsp. essential oil has a higher range of inhibition, in which and showed an extreme sensitivity, while the bacterium shows a great resistance to the two essential oils.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14786419.2023.2280818DOI Listing

Publication Analysis

Top Keywords

chemical composition
8
essential oils
8
wild olive
8
olive subspecies
8
lvar sylvestris
8
composition antimicrobial
4
antimicrobial activity
4
activity essential
4
oils wild
4
subspecies lvar
4

Similar Publications

The exploration of the mitochondrial apoptotic pathway in living cells is of great significance for achieving tumor diagnosis and treatment. However, visualization of the mitochondrial apoptotic pathway induced by specific proteins has rarely been reported. In this paper, we designed and synthesized a fluorescent probe Cy-JQ1 based on the bromodomain-containing protein 4 (BRD4) inhibition.

View Article and Find Full Text PDF

A conformational switch-controlled RNA sensor based on orthogonal dCas12a for RNA imaging in live cells.

Biosens Bioelectron

January 2025

Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, 200237, China; School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, 832000, China. Electronic address:

RNA imaging technology is essential for understanding the complex RNA regulatory mechanisms and serves as a powerful tool for disease diagnosis. However, conventional RNA imaging methods often require multiple fluorescent tags for the specific labeling of individual targets, complicating both the imaging process and subsequent analysis. Herein, we develop an RNA sensor that integrates a blocked CRISPR RNA (crRNA)-based conformational switch with a controllable CRISPR activation (CRISPRa) system and apply for RNA imaging.

View Article and Find Full Text PDF

Twisted halide perovskite bilayers, a type of moiré material, show square moiré patterns with exciting optical properties. Atomic-scale structure analysis and its correlation with properties are difficult to achieve due to the extreme sensitivity of organic-inorganic halide perovskites to the illuminated electron beam in conventional/scanning transmission electron microscopy. Here, we developed a low-dose exit wave reconstruction methodology with a real-space resolution of one angstrom at ∼50 e/Å, which recovers the phase information on the moiré fringes in CHNHPbI (MAPbI) twisted perovskite bilayers at atomic scale, enabling detailed structural analysis of defects and corresponding strain distribution in such moiré materials.

View Article and Find Full Text PDF

Polyoxometalates (POMs) are composed of nanometric metal-oxide anions and have rich solution chemistry. In this class, Keggin POMs have been identified as the most influential inorganic additives for aqueous nonionic soft matter systems. POMs being at the borderline of classical ions and charged colloids possess fascinating solution properties; the present work aims to delve deeper into the interactions between nanoions and nonionic soft matters from a spectroscopic point of view.

View Article and Find Full Text PDF

Modulating the Oxygen Evolution Reaction of Single-Crystal Cobalt Carbonate Hydroxide via Surface Fe Doping and Facet Dependence.

J Phys Chem Lett

January 2025

Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China.

The oxygen evolution reaction (OER) is a critical half-reaction in water splitting and metal-air cells. The sensitivity of the OER to the composition and structure of the electrocatalyst presents a significant challenge in elucidating the structure-property relationship. In this study, highly stable single-crystal cobalt carbonate hydroxide [Co(OH)CO, CoCH] was used as a model to investigate the correlations among structure, composition, and reactivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!