Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into various cell types and secrete extracellular vesicles (EVs) that transport bioactive molecules and mediate intercellular communication. MSCs and MSC-derived EVs (MSC-EVs) have shown promising therapeutic effects in several diseases. However, their procoagulant activity and thrombogenic risk may limit their clinical safety. In this review, we summarize current knowledge on procoagulant molecules expressed on the surface of MSCs and MSC-EVs, such as tissue factor and phosphatidylserine. Moreover, we discuss how these molecules interact with the coagulation system and contribute to thrombus formation through different mechanisms. Additionally, various confounding factors, such as cell dose, tissue source, passage number, and culture conditions of MSCs and subpopulations of MSC-EVs, affect the expression of procoagulant molecules and procoagulant activity of MSCs and MSC-EVs. Therefore, herein, we summarize several strategies to reduce the surface procoagulant activity of MSCs and MSC-EVs, thereby aiming to improve their safety profile for clinical use.

Download full-text PDF

Source
http://dx.doi.org/10.1093/stmcls/sxad087DOI Listing

Publication Analysis

Top Keywords

procoagulant activity
12
mscs msc-evs
12
mesenchymal stem
8
stem cells
8
extracellular vesicles
8
procoagulant molecules
8
activity mscs
8
procoagulant
6
mscs
6
msc-evs
5

Similar Publications

Red blood cells (RBCs) serve as natural transporters and can be modified to enhance the pharmacokinetics and pharmacodynamics of a protein cargo. Affinity targeting of Factor IX (FIX) to the RBC membrane is a promising approach to improve the (pro)enzyme's pharmacokinetics. For RBC targeting, purified human FIX was conjugated to the anti-mouse glycophorin A monoclonal antibody Ter119.

View Article and Find Full Text PDF

In thrombosis and hemostasis, the formation of a platelet-fibrin thrombus or clot is a highly controlled process that varies, depending on the pathological context. Major signaling pathways in platelets are well established. However, studies with genetically modified mice have identified the contribution of hundreds of additional platelet-expressed proteins in arterial thrombus formation and bleeding.

View Article and Find Full Text PDF

Background: Extracellular vesicles (EVs) have procoagulative properties. As EVs are known to accumulate in stored blood products, we compared the EV content and coagulation capacity of leukoreduced cold-stored whole blood (CSWB) with current prehospital and in-hospital component therapies to understand the role of EVs in the haemostatic capacity of ageing CSWB.

Materials And Methods: Blood was obtained from 12 O RhD-positive male donors.

View Article and Find Full Text PDF

Circadian misalignment, due to shiftwork and/or individual chronotype and/or social jetlag (SJL), quantified as the difference between internal and social timing, may contribute to cardiovascular disease. Markers of endothelial dysfunction and activation of the coagulation system may predict cardiovascular pathology. The present study aim was to investigate the effects of shift work, SJL, and chronotype on endothelial function and coagulation parameters.

View Article and Find Full Text PDF

We investigated the sex-dependent effects of inflammatory responses in visceral adipose tissue (VAT) and perivascular adipose tissue (PVAT), as well as hematological status, in relation to cardiovascular disorders associated with prediabetes. Using male and female hereditary hypertriglyceridemic (HHTg) rats-a nonobese prediabetic model featuring dyslipidemia, hepatic steatosis, and insulin resistance-we found that HHTg females exhibited more pronounced hypertriglyceridemia than males, while HHTg males had higher non-fasting glucose levels. Additionally, HHTg females had higher platelet counts, larger platelet volumes, and lower antithrombin inhibitory activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!