We propose and experimentally demonstrate a four-wavelength-switchable single-longitudinal-mode (SLM) narrow linewidth thulium-holmium co-doped fiber laser (THDFL) using two polarization-dependent parallel fiber Bragg gratings (PD-PFBGs). The PD-PFBGs, fabricated using femtosecond (fs) laser direct-writing technology in a standard single-mode fiber (SMF) via a point-by-point method, are used as a four-channel reflection filter. Two FBGs are inscribed in parallel in the fiber core along the axial direction and are uniquely positioned symmetrically on either side of the centerline. This configuration enables polarization-dependent multi-channel filtering capability, which further allows for polarization-control-based four-wavelength-switchable operations of the THDFL. SLM lasing is accomplished by utilizing a simple dual-ring sub-cavity filter. An exceptional output performance of the THDFL is achieved, including an optical signal-to-noise ratio (SNR) of >72 dB, maximum power and wavelength fluctuations of 0.350 dB and 0.024 nm, respectively, and a linewidth of <2 kHz, for all four single-wavelength operations lasing at ∼2000 nm. These performance indicators suggest that the THDFL can be applied in free-space optical communication, atmospheric monitoring, and Lidar.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.506241 | DOI Listing |
PLoS Comput Biol
January 2025
Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri, United States of America.
Cell collectives, like other motile entities, generate and use forces to move forward. Here, we ask whether environmental configurations alter this proportional force-speed relationship, since aligned extracellular matrix fibers are known to cause directed migration. We show that aligned fibers serve as active conduits for spatial propagation of cellular mechanotransduction through matrix exoskeleton, leading to efficient directed collective cell migration.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Munich Cluster for Systems Neurology (SyNergy), Munich, Bavaria, Germany.
Background: In Alzheimer's disease (AD), cortical tau aggregation is a strong predictor of cortical brain atrophy as shown by MRI and PET studies, particularly driving the degeneration of neuronal somata in the grey matter. However, tau's physiological role is to stabilize microtubules within axons in the brain's white matter (WM) pathways. Therefore, tau's white-to-grey-matter translocation and aggregation in neurofibrillary tangles close to neuronal somata may induce WM degeneration through destabilization of axonal microtubule integrity.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Munich Cluster for Systems Neurology (SyNergy), Munich, Bavaria, Germany.
Background: In Alzheimer's disease (AD), cortical tau aggregation is a strong predictor of cortical brain atrophy as shown by MRI and PET studies, particularly driving the degeneration of neuronal somata in the grey matter. However, tau's physiological role is to stabilize microtubules within axons in the brain's white matter (WM) pathways. Therefore, tau's white-to-grey-matter translocation and aggregation in neurofibrillary tangles close to neuronal somata may induce WM degeneration through destabilization of axonal microtubule integrity.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK.
Form-function relationships often have tradeoffs: if a material is tough, it is often inflexible, and vice versa. This is particularly relevant for the elephant trunk, where the skin should be protective yet elastic. To investigate how this is achieved, we used classical histochemical staining and second harmonic generation microscopy to describe the morphology and composition of elephant trunk skin.
View Article and Find Full Text PDFSensors (Basel)
December 2024
State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
Methane gas leakage can lead to pollution problems, such as rising ambient temperature. In this paper, the Vernier effect of a double D-shaped photonic crystal fiber (PCF) in a Sagnac interferometer (SI) is proposed for the accurate detection of mixed methane gas content in the gas. The optical fiber structure of the effective sensing in the sensing SI loop and the effective sensing in the reference SI loop are the same.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!