Highly sensitive testing of trace lipopolysaccharides (LPS) is very important due to their high toxicity to the human body. Here, an ultrasensitive electrochemical sensor requiring only 5 μL solution was developed for LPS detection triple-signal amplification based on ultrafast atom transfer radical polymerization (UATRP) and a Au ultramicroelectrode (UME). Firstly, the Au UME was modified with gold nanoparticles (nAu) and an LPS aptamer (Apt) in turn. When the Apt recognized LPS, the ATRP initiator of 4-(bromomethyl)phenylboronic acid (BPA) could be tethered to the electrode by covalent cross-linking between the phenylboronic acid moiety and the -diol site of LPS. Then UATRP was conducted for 2.5 min with nitrogen-doped carbon quantum dots (N-CQDs) as the photocatalyst and methylacrolein (MLA) as the monomer. After the electroactive probes of Ag nanoparticles (AgNPs) were formed on the surface of poly(MLA) by the silver mirror reaction, the electrochemical sensor was successfully prepared. Under the optimal conditions, the sensor exhibited a lower detection limit and a wider linear range when it was compared with a similar assay for LPS. In particular, the LOD of 7.99 × 10 pg mL was better than that of the limulus amoebocyte lysate (LAL)-based technique, which is the gold standard for LPS detection. In the end, the sensor reported in this paper showed good selectivity and satisfactory feasibility for LPS detection in real biological samples and food products. The results obtained from the drug, blood and potable water samples laid a strong foundation for its clinical applications and application in other fields.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3an01624bDOI Listing

Publication Analysis

Top Keywords

lps detection
12
triple-signal amplification
8
lps
8
electrochemical sensor
8
detection
5
ultramicro ultrasensitive
4
ultrasensitive detection
4
detection lipopolysaccharides
4
lipopolysaccharides based
4
based triple-signal
4

Similar Publications

Background: Peripheral nerve injury (PNI) is a common clinical problem that can result in partial or complete loss of sensory, motor, and autonomic functions. Tetrahydropalmatine (THP), a Corydalis yanhusuo-derived phytochemical alkaloid, possesses hypnotic, soothing, analgesic, and other effects, but little is known about the effect of THP on moderating peripheral nerve regeneration and its possible underlying mechanism of action.

Purpose: In this study, we aim to elucidate the protective function of THP on PNI and further reveal the underlying pharmacological mechanisms.

View Article and Find Full Text PDF

Gentiopicroside ameliorates synovial inflammation and fibrosis in KOA rats by modulating the HMGB1-mediated PI3K/AKT signaling axis.

Int Immunopharmacol

January 2025

Department of Orthopaedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China. Electronic address:

Background: Knee osteoarthritis (KOA) is a degenerative joint disease characterized by synovial inflammation and fibrosis. Gentiopicroside (GPS), one of the main active ingredients of Gentiana macrophylla, is widely used in anti-inflammatory and anti-fibrotic therapies. However, the exact mechanism by which GPS treats synovial inflammation and fibrosis in KOA remains unclear.

View Article and Find Full Text PDF

Background: Acute respiratory distress syndrome (ARDS) is a life-threatening and heterogeneous disorder leading to lung injury. To date, effective therapies for ARDS remain limited. Sepsis is a frequent inducer of ARDS.

View Article and Find Full Text PDF

Chronic heart failure, caused by myocardial fibrosis after acute myocardial infarction (AMI), remains a serious clinical problem that needs urgent resolution. Nitro-oleic acid (OA-NO), an electrophilic nitro-fatty acid found in human plasma, is believed to regulate various pathophysiological functions, particularly anti-inflammation and anti-fibrosis. However, the role of OA-NO in AMI remains unexplored.

View Article and Find Full Text PDF
Article Synopsis
  • Human periodontal ligament stem cells (hPDLSCs) are essential for periodontal tissue regeneration, and the study investigates the role of FOXA1 in periodontal inflammation and osteogenic differentiation of these cells.
  • Results indicate that FOXA1 expression increases in periodontal tissues from periodontitis patients and is further elevated by LPS treatment, leading to inflammatory responses and reduced osteogenic differentiation.
  • Silencing FOXA1 can decrease inflammation by inhibiting the TLR4/MyD88/NF-κB pathway and enhance the osteogenic differentiation of hPDLSCs despite LPS-induced suppression.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!