https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=37966347&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 379663472023121620231216
2165-04971162023Dec12Microbiology spectrumMicrobiol SpectrClassification of patients with COVID-19 by blood RNA endotype: a prospective cohort study.e0264523e0264523e02645-2310.1128/spectrum.02645-23In this study, whole-blood RNAs (prolactin and toll-like receptor 3) involved in the prognosis of patients with COVID-19 were identified. The RNA endotypes classified by these important RNAs highlight the possibility of stratifying the COVID-19 patient population and the need for targeted therapy based on these phenotypes.YoshimuraJumpeiJ0000-0002-4092-8140Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine , Suita, Japan.TogamiYukiYDepartment of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine , Suita, Japan.EbiharaTakeshiTDepartment of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine , Suita, Japan.Center for Infectious Disease Education and Research, Osaka University , Suita, Japan.MatsumotoHisatakeH0000-0001-5771-570XDepartment of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine , Suita, Japan.Center for Infectious Disease Education and Research, Osaka University , Suita, Japan.MitsuyamaYumiYDepartment of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine , Suita, Japan.Division of Trauma and Surgical Critical Care, Osaka General Medical Center , Osaka, Japan.SugiharaFuminoriFCore Instrumentation Facility, Immunology Frontier Research Center and Research Institute for Microbial Diseases, Osaka University , Osaka, Japan.HirataHaruhikoHDepartment of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine , Osaka, Japan.OkuzakiDaisukeDCenter for Infectious Disease Education and Research, Osaka University , Suita, Japan.Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Research Center, Osaka University , Osaka, Japan.Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University , Osaka, Japan.OguraHiroshiHDepartment of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine , Suita, Japan.Center for Infectious Disease Education and Research, Osaka University , Suita, Japan.eng20fk0108404h0001Japan Agency for Medical Research and Development (AMED)The Nippon Foundation Osaka University Project for Infectious Disease PreventionJournal Article20231115
United StatesMicrobiol Spectr1016346142165-049763231-63-0RNAIMHumansCOVID-19RNAProspective StudiesPhenotypePrognosisCOVID-19SARS-CoV-2clusteringphenotypeprognostic biomarkersubtypeThe authors declare no conflict of interest.
2023121713192023111512422023111594320231115ppublish37966347PMC1071506310.1128/spectrum.02645-23Adil MT, Rahman R, Whitelaw D, Jain V, Al-Taan O, Rashid F, Munasinghe A, Jambulingam P. 2021. SARS-CoV-2 and the pandemic of COVID-19. Postgrad Med J 97:110–116. doi:10.1136/postgradmedj-2020-13838610.1136/postgradmedj-2020-138386PMC1001699632788312Khanmohammadi S, Rezaei N. 2021. Role of toll-like receptors in the pathogenesis of COVID-19. J Med Virol 93:2735–2739. doi:10.1002/jmv.2682610.1002/jmv.26826PMC801426033506952Baghela A, Pena OM, Lee AH, Baquir B, Falsafi R, An A, Farmer SW, Hurlburt A, Mondragon-Cardona A, Rivera JD, Baker A, Trahtemberg U, Shojaei M, Jimenez-Canizales CE, Dos Santos CC, Tang B, Bouma HR, Cohen Freue GV, Hancock REW. 2022. Predicting sepsis severity at first clinical presentation: the role of endotypes and mechanistic signatures. EBioMedicine 75:103776. doi:10.1016/j.ebiom.2021.10377610.1016/j.ebiom.2021.103776PMC880816135027333Vukmirovic M, Yan X, Gibson KF, Gulati M, Schupp JC, DeIuliis G, Adams TS, Hu B, Mihaljinec A, Woolard TN, et al. . 2021. Transcriptomics of bronchoalveolar lavage cells identifies new molecular endotypes of sarcoidosis. Eur Respir J 58:2002950. doi:10.1183/13993003.02950-202010.1183/13993003.02950-2020PMC975979134083402Agache I, Shamji MH, Kermani NZ, Vecchi G, Favaro A, Layhadi JA, Heider A, Akbas DS, Filipaviciute P, Wu LYD, Cojanu C, Laculiceanu A, Akdis CA, Adcock IM. 2023. Multidimensional endotyping using nasal proteomics predicts molecular phenotypes in the asthmatic airways. J Allergy Clin Immunol 151:128–137. doi:10.1016/j.jaci.2022.06.02810.1016/j.jaci.2022.06.02836154846Maslove DM, Tang B, Shankar-Hari M, Lawler PR, Angus DC, Baillie JK, Baron RM, Bauer M, Buchman TG, Calfee CS, et al. . 2022. Redefining critical illness. Nat Med 28:1141–1148. doi:10.1038/s41591-022-01843-x10.1038/s41591-022-01843-x35715504 World Health Organization . 2020. COVID-19 therapeutic trial Synopsis. Available from: https://www.who.int/publications-detail-redirect/covid-19-therapeutic-trial-synopsis/. Retrieved 25 Oct 2022.Ebihara T, Matsumoto H, Matsubara T, Togami Y, Nakao S, Matsuura H, Kojima T, Sugihara F, Okuzaki D, Hirata H, Yamamura H, Ogura H. 2021. Cytokine elevation in severe COVID-19 from longitudinal proteomics analysis: comparison with sepsis. Front Immunol 12:798338. doi:10.3389/fimmu.2021.79833810.3389/fimmu.2021.798338PMC879004935095877Togami Y, Matsumoto H, Yoshimura J, Matsubara T, Ebihara T, Matsuura H, Mitsuyama Y, Kojima T, Ishikawa M, Sugihara F, Hirata H, Okuzaki D, Ogura H. 2022. Significance of interferon signaling based on mRNA-microRNA integration and plasma protein analyses in critically ill COVID-19 patients. Mol Ther Nucleic Acids 29:343–353. doi:10.1016/j.omtn.2022.07.00510.1016/j.omtn.2022.07.005PMC927801535855895McGrath L, O’Keeffe J, Slattery O. 2022. Antimicrobial peptide gene expression in Atlantic salmon (Salmo salar) seven days post-challenge with Neoparamoeba perurans. Dev Comp Immunol 127:104287. doi:10.1016/j.dci.2021.10428710.1016/j.dci.2021.10428734619176Magray AR, Ribera JM, Isernhagen L, Galuska SP, Günther J, Verleih M, Viergutz T, Brunner RM, Ganai BA, Ahmad F, Zlatina K, Rebl A. 2022. Evaluation of blood cell viability rate, gene expression, and O-GlcNAcylation profiles as indicative signatures for fungal stimulation of salmonid cell models. Mol Immunol 142:120–129. doi:10.1016/j.molimm.2021.12.01910.1016/j.molimm.2021.12.01934979452Ebihara T, Matsubara T, Togami Y, Matsumoto H, Tachino J, Matsuura H, Kojima T, Sugihara F, Seno S, Okuzaki D, Hirata H, Ogura H. 2023. Combination of WFDC2, CHI3L1 and KRT19 in plasma defines a clinically useful molecular phenotype associated with prognosis in critically ill COVID-19 patients. J Clin Immunol 43:286–298. doi:10.1007/s10875-022-01386-310.1007/s10875-022-01386-3PMC963829436331721 R: The R Project for Statistical Computing. Available from: https://www.r-project.org/. Retrieved 15 Oct 2022.Krämer A, Green J, Pollard J, Tugendreich S. 2014. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics 30:523–530. doi:10.1093/bioinformatics/btt70310.1093/bioinformatics/btt703PMC392852024336805Freeman ME, Kanyicska B, Lerant A, Nagy G. 2000. Prolactin: structure, function, and regulation of secretion. Physiol Rev 80:1523–1631. doi:10.1152/physrev.2000.80.4.152310.1152/physrev.2000.80.4.152311015620Zhang C, Raveney BJE, Hohjoh H, Tomi C, Oki S, Yamamura T. 2019. Extrapituitary prolactin promotes generation of eomes-positive helper T cells mediating neuroinflammation. Proc Natl Acad Sci U S A 116:21131–21139. doi:10.1073/pnas.190643811610.1073/pnas.1906438116PMC680032631570595Xu D, Lin L, Lin X, Huang Z, Lei Z. 2010. Immunoregulation of autocrine prolactin: suppressing the expression of costimulatory molecules and cytokines in T lymphocytes by prolactin receptor knockdown. Cell Immunol 263:71–78. doi:10.1016/j.cellimm.2010.02.01810.1016/j.cellimm.2010.02.01820307875Chavez-Rueda K, Hérnández J, Zenteno E, Leaños-Miranda A, Legorreta-Haquet MV, Blanco-Favela F. 2005. Identification of prolactin as a novel immunomodulator on the expression of co-stimulatory molecules and cytokine secretions on T and B human lymphocytes. Clin Immunol 116:182–191. doi:10.1016/j.clim.2005.03.01310.1016/j.clim.2005.03.01315993365Matera L, Galetto A, Geuna M, Vekemans K, Ricotti E, Contarini M, Moro F, Basso G. 2000. Individual and combined effect of granulocyte-macrophage colony-stimulating factor and prolactin on maturation of dendritic cells from blood monocytes under serum-free conditions. Immunology 100:29–36. doi:10.1046/j.1365-2567.2000.00996.x10.1046/j.1365-2567.2000.00996.xPMC232699210809956Al-Kuraishy HM, Al-Gareeb AI, Butnariu M, Batiha GE-S. 2022. The crucial role of prolactin-lactogenic hormone in COVID-19. Mol Cell Biochem 477:1381–1392. doi:10.1007/s11010-022-04381-910.1007/s11010-022-04381-9PMC883116535147901Thompson MR, Kaminski JJ, Kurt-Jones EA, Fitzgerald KA. 2011. Pattern recognition receptors and the innate immune response to viral infection. Viruses 3:920–940. doi:10.3390/v306092010.3390/v3060920PMC318601121994762Totura AL, Whitmore A, Agnihothram S, Schäfer A, Katze MG, Heise MT, Baric RS, Lipkin WI. 2015. Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection. mBio 6:e00638-15. doi:10.1128/mBio.00638-1510.1128/mBio.00638-15PMC444725126015500Dhangadamajhi G, Rout R. 2021. Association of TLR3 functional variant (rs3775291) with COVID-19 susceptibility and death: a population-scale study. Hum Cell 34:1025–1027. doi:10.1007/s13577-021-00510-610.1007/s13577-021-00510-6PMC789773033616867Esposito S, Molteni CG, Giliani S, Mazza C, Scala A, Tagliaferri L, Pelucchi C, Fossali E, Plebani A, Principi N. 2012. Toll-like receptor 3 gene polymorphisms and severity of pandemic A/H1N1/2009 influenza in otherwise healthy children. Virol J 9:270. doi:10.1186/1743-422X-9-27010.1186/1743-422X-9-270PMC351124523151015Peckham H, de Gruijter NM, Raine C, Radziszewska A, Ciurtin C, Wedderburn LR, Rosser EC, Webb K, Deakin CT. 2020. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat Commun 11:6317. doi:10.1038/s41467-020-19741-610.1038/s41467-020-19741-6PMC772656333298944Malik P, Patel U, Mehta D, Patel N, Kelkar R, Akrmah M, Gabrilove JL, Sacks H. 2021. Biomarkers and outcomes of COVID-19 hospitalisations: systematic review and meta-analysis. BMJ Evid Based Med 26:107–108. doi:10.1136/bmjebm-2020-11153610.1136/bmjebm-2020-111536PMC749307232934000Gallo Marin B, Aghagoli G, Lavine K, Yang L, Siff EJ, Chiang SS, Salazar-Mather TP, Dumenco L, Savaria MC, Aung SN, Flanigan T, Michelow IC. 2021. Predictors of COVID-19 severity: a literature review. Rev Med Virol 31:1–10. doi:10.1002/rmv.214610.1002/rmv.2146PMC785537732845042Wong HR, Cvijanovich NZ, Allen GL, Thomas NJ, Freishtat RJ, Anas N, Meyer K, Checchia PA, Weiss SL, Shanley TP, Bigham MT, Banschbach S, Beckman E, Harmon K, Zimmerman JJ. 2014. Corticosteroids are associated with repression of adaptive immunity gene programs in pediatric septic shock. Am J Respir Crit Care Med 189:940–946. doi:10.1164/rccm.201401-0171OC10.1164/rccm.201401-0171OCPMC409810124650276Stanski NL, Wong HR. 2020. Prognostic and predictive enrichment in sepsis. Nat Rev Nephrol 16:20–31. doi:10.1038/s41581-019-0199-310.1038/s41581-019-0199-3PMC709745231511662Wolter N, Jassat W, Walaza S, Welch R, Moultrie H, Groome M, Amoako DG, Everatt J, Bhiman JN, Scheepers C, et al. . 2022. Early assessment of the clinical severity of the SARS-CoV-2 omicron variant in South Africa: a data linkage study. Lancet 399:437–446. doi:10.1016/S0140-6736(22)00017-410.1016/S0140-6736(22)00017-4PMC876966435065011Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. 2020. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. JAMA 324:782–793. doi:10.1001/jama.2020.1283910.1001/jama.2020.1283932648899