This article proposes a film-linked electrostatic self-assembly microfluidic chip for the first time, designed to be ready-to-use. Barrier films are used to isolate the gas/liquid path microchannels and the pre-stored reagents of the chip before use. Through the linkage design between the film materials, the motion of barrier films is linked to the structural changes inside the chip. Under the combined action of the rebound force of the elastic substrate, the electrostatic adsorption force between the substrates, and the reaction force of the elastic film, the elastic substrate and the liquid storage substrate are instantly bonded, and the self-assembly of the chip is completed within 1 s. By using six independently output programmable sequences to perform the sequential quantitative pumping of pre-stored reagents, the transfer and mixing of samples and pre-stored reagents are automatically driven in a confined space, which greatly reduces the contamination risk and loss rate of samples/reagents, and improves the accuracy and reproducibility of test results. In addition, the microfluidic multi-step reaction driven in parallel can avoid liquid reflux, accurately control the amount of reactant transfer, and realize the quantitative detection of samples. Multiple reactions can be performed synchronously without interference, saving the test time. Since each gas path is independently controllable, the chip can be extended to a variety of biochemical reactions and has the potential to detect a variety of substances.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3an01377dDOI Listing

Publication Analysis

Top Keywords

pre-stored reagents
12
film-linked electrostatic
8
electrostatic self-assembly
8
self-assembly microfluidic
8
microfluidic chip
8
barrier films
8
force elastic
8
elastic substrate
8
chip
6
chip article
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!