Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Water and hydrogen cyanide are two of the most common species in space and the atmosphere with the ability of binding to form dimers such as HO-HCN. In the literature, while calculations characterizing various properties of the HO-HCN cluster (equilibrium distance, vibrational frequencies and rotational constants) have been done in the past, extensive calculations of the rovibrational states of this system using a reliable quantum dynamical approach have yet to be reported. In this work, we intend to mend that by performing the first calculation of the rovibrational states of the HO-HCN van der Waals complex on a recently developed potential energy surface. We use the block improved relaxation procedure implemented in the Heidelberg MultiConfiguration Time-Dependent Hartree (MCTDH) package to compute the states of the HO-HCN isomer, from which we extract the transition frequencies and rotational constants of the complex. We further adapt an approach first suggested by Wang and Carrington-and supported here by analysis routines of the Heidelberg MCTDH package-to properly characterize the computed rovibrational states. The subsequent assignment of rovibrational states was done by theoretical analysis and visual inspection of the wavefunctions. Our simulations provide a Zero Point Energy (ZPE) and intermolecular vibrational frequencies in good agreement with past calculations. The transition frequencies and rotational constants obtained from our simulations match well with the available experimental data. This work has the broad aim to propose the MCTDH approach as a reliable option to compute and characterize rovibrational states of van der Waals complexes such as the current one.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cp03225f | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!