Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
One of the most extensive natural plague centers, or foci, is located in Central Asia, in particular, the Zhambyl region in Southern Kazakhstan. Here, we conducted plague surveillance from 2000 to 2020 in the Zhambyl region in Kazakhstan and confirmed 3,072 cases of infected wild animals. We used Species Distribution Modeling by employing MaxEnt, and identified that the natural plague foci are primarily located in the Moiynqum, Betpaqdala, and Tauqum Deserts. The Zhambyl region's central part, including the Moiynqum and Sarysu districts, has a high potential risk of plague outbreak for the rural towns and villages. Since the phenomenon of climate change has been identified as a determinant that affects the rodent populations, thereby elevating the likelihood of an outbreak of plague, we investigated the potential dissemination routes of the disease under the changing climate conditions, thus creating Species Distribution Forecasts for the rodent species in southern part of Kazakhstan for the year 2100. By 2100, in case of increasing temperatures, the range of host species is likely to expand, leading to a higher risk of plague outbreaks. The highest risk of disease transmission can be expected at the outer limits of the modeled total distribution range, where infection rates are high, but antibody presence is low, making many species susceptible to the pathogen. To mitigate the risk of a potential plague outbreak, it is necessary to implement appropriate sanitary-epidemiological measures and climate mitigation policies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10641984 | PMC |
http://dx.doi.org/10.1029/2023GH000853 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!