A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mint leaves: Dried, fresh, and spoiled dataset for condition analysis and machine learning applications. | LitMetric

We present a comprehensive dataset of 5,323 images of mint (pudina) leaves in various conditions, including dried, fresh, and spoiled. The dataset is designed to facilitate research in the domain of condition analysis and machine learning applications for leaf quality assessment. Each category of the dataset contains a diverse range of images captured under controlled conditions, ensuring variations in lighting, background, and leaf orientation. The dataset also includes manual annotations for each image, which categorize them into the respective conditions. This dataset has the potential to be used to train and evaluate machine learning algorithms and computer vision models for accurate discernment of the condition of mint leaves. This could enable rapid quality assessment and decision-making in various industries, such as agriculture, food preservation, and pharmaceuticals. We invite researchers to explore innovative approaches to advance the field of leaf quality assessment and contribute to the development of reliable automated systems using our dataset and its associated annotations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10641137PMC
http://dx.doi.org/10.1016/j.dib.2023.109717DOI Listing

Publication Analysis

Top Keywords

machine learning
12
quality assessment
12
mint leaves
8
dried fresh
8
fresh spoiled
8
spoiled dataset
8
condition analysis
8
analysis machine
8
learning applications
8
leaf quality
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!