Land Use Land Cover (LULC) classification is pivotal to sustainable environment and natural resource management. It is critical in planning, monitoring, and management programs at various local and national levels. Monitoring changes in LULC patterns over time is crucial for understanding evolving landscapes. Traditionally, LULC classification has been achieved through satellite data by remote sensing, geographic information system (GIS) techniques, machine learning classifiers, and deep learning models. Semantic segmentation, a technique for assigning land cover classes to individual pixels in an image, is commonly employed for LULC mapping. In recent years, the deep learning revolution, particularly Convolutional Neural Networks (CNNs), has reshaped the field of computer vision and LULC classification. Deep architectures have consistently outperformed traditional methods, offering greater accuracy and efficiency. However, the availability of high-quality datasets has been a limiting factor. Bridging the gap between modern computer vision and remote sensing data analysis can revolutionize our understanding of the environment and drive breakthroughs in urban planning and ecosystem change research. The "Sen-2 LULC Dataset" has been created to facilitate this convergence. This dataset comprises of 213,761 pre-processed 10 m resolution images representing seven LULC classes. These classes encompass water bodies, dense forests, sparse forests, barren land, built-up areas, agricultural land, and fallow land. Importantly, each image may contain multiple coexisting land use and land cover classes, mirroring the real-world complexity of landscapes. The dataset is derived from Sentinel-2 satellite imagery sourced from the Copernicus Open Access Hub (https://scihub.copernicus.eu/) platform. It includes spectral bands B4, B3, and B2, corresponding to red, green, and blue (RGB) channels, and offers a spectral resolution of 10 m. The dataset also provides an equal number of mask images. Structured into six folders, the dataset offers training, testing, and validation sets for images and masks. Researchers across various domains can leverage this resource to advance LULC classification in the context of the Indian region. Additionally, it catalyzes fostering collaboration between remote sensing and computer vision communities, enabling novel insights into environmental dynamics and urban planning challenges.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10641585 | PMC |
http://dx.doi.org/10.1016/j.dib.2023.109724 | DOI Listing |
Sci Rep
January 2025
Department of Forest Engineering, Faculty of Forestry, Kastamonu University, Kastamonu, Türkiye, Turkey.
Rapid urban growth is a subject of worldwide interest due to environmental problems. Population growth, especially migration from rural to urban areas, leads to land use and land cover (LULCC) changes in urban centres. Therefore, LULCC and urban growth analyses are among the studies that will help decision-makers achieve better sustainable management and planning.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Geography, Rampurhat College, PO-Rampurhat, Dist-Birbhum, 731224, India.
In fluvial environments, the shifting of river channels and bank erosion are frequently caused by both natural and anthropogenic factors. Riverine hazards like bank erosion and course alterations offer severe issues to the riparian villages along the lower basin of the Tista River in India, which substantially influence the livelihoods of inhabitants living there. This research addressed river channel shifting tendency and identified major bank erosion-prone villages along the lower course of the Tista River and challenges to the livelihoods of the riparian people.
View Article and Find Full Text PDFSci Rep
January 2025
Computer Vision Center, Universitat Autònoma de Barcelona, Barcelona, 08193, Spain.
In this study, we explore an enhancement to the U-Net architecture by integrating SK-ResNeXt as the encoder for Land Cover Classification (LCC) tasks using Multispectral Imaging (MSI). SK-ResNeXt introduces cardinality and adaptive kernel sizes, allowing U-Net to better capture multi-scale features and adjust more effectively to variations in spatial resolution, thereby enhancing the model's ability to segment complex land cover types. We evaluate this approach using the Five-Billion-Pixels dataset, composed of 150 large-scale RGB-NIR images and over 5 billion labeled pixels across 24 categories.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Institute of Geography, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04001, Košice, Slovak Republic.
In recent decades, global climate change and rapid urbanization have aggravated the urban heat island (UHI) effect, affecting the well-being of urban citizens. Although this significant phenomenon is more pronounced in larger metropolitan areas due to extensive impervious surfaces, small- and medium-sized cities also experience UHI effects, yet research on UHI in these cities is rare, emphasizing the importance of land surface temperature (LST) as a key parameter for studying UHI dynamics. Therefore, this paper focuses on the evaluation of LST and land cover (LC) changes in the city of Prešov, Slovakia, a typical medium-sized European city that has recently undergone significant LC changes.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, China.
Exploring the response relationship between civil war, population and land cover change is of great practical significance for social stability in Myanmar. However, the ongoing civil war in Myanmar hinders direct understanding of the situation on the ground, which in turn limits detailed study of the intricate relationship between the dynamics of the civil war and its impact on population and land. Therefore, this paper explores the response relationship between civil war conflict and population and land cover change in Myanmar from 2010 to 2020 from the perspective of remote sensing using the land cover data we produced, the open spatial demographics data, and the armed conflict location and event data project.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!