Missense variants in calmodulin (CaM) predispose patients to arrhythmias associated with high mortality rates ("calmodulinopathy"). As CaM regulates many key cardiac ion channels, an understanding of disease mechanism associated with CaM variant arrhythmias requires elucidating individual CaM variant effects on distinct channels. One key CaM regulatory target is the KCNQ1 (K7.1) voltage-gated potassium channel that carries the I current. Yet, relatively little is known as to how CaM variants interact with KCNQ1 or affect its function. Here, we take a multipronged approach employing a live-cell fluorescence resonance energy transfer binding assay, fluorescence trafficking assay, and functional electrophysiology to characterize >10 arrhythmia-associated CaM variants for effect on KCNQ1 CaM binding, membrane trafficking, and channel function. We identify one variant (G114W) that exhibits severely weakened binding to KCNQ1 but find that most other CaM variants interact with similar binding affinity to KCNQ1 when compared with CaM wild-type over physiological Ca ranges. We further identify several CaM variants that affect KCNQ1 and I membrane trafficking and/or baseline current activation kinetics, thereby delineating KCNQ1 dysfunction in calmodulinopathy. Lastly, we identify CaM variants with no effect on KCNQ1 function. This study provides extensive functional data that reveal how CaM variants contribute to creating a proarrhythmic substrate by causing abnormal KCNQ1 membrane trafficking and current conduction. We find that CaM variant regulation of KCNQ1 is not uniform with effects varying from benign to significant loss of function, suggesting how CaM variants predispose patients to arrhythmia via the dysregulation of multiple cardiac ion channels. : Biological, Health, and Medical Sciences, Physiology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10642763PMC
http://dx.doi.org/10.1093/pnasnexus/pgad335DOI Listing

Publication Analysis

Top Keywords

cam variants
28
membrane trafficking
16
cam
15
variants interact
12
cam variant
12
kcnq1
11
variants
9
interact kcnq1
8
predispose patients
8
cardiac ion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!