Sustainability development goals (SDGs) are regarded as a universal call to action with the overall objectives of planet protection, ending of poverty, and ensuring peace and prosperity for all people. In order to achieve these objectives, different AI technologies play a major role. Specifically, recommender systems can provide support for organizations and individuals to achieve the defined goals. Recommender systems integrate AI technologies such as machine learning, explainable AI (XAI), case-based reasoning, and constraint solving in order to find and explain user-relevant alternatives from a potentially large set of options. In this article, we summarize the state of the art in applying recommender systems to support the achievement of sustainability development goals. In this context, we discuss open issues for future research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10642936 | PMC |
http://dx.doi.org/10.3389/fdata.2023.1284511 | DOI Listing |
Sci Rep
January 2025
School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, Guangdong, China.
Knowledge-aware recommendation systems often face challenges owing to sparse supervision signals and redundant entity relations, which can diminish the advantages of utilizing knowledge graphs for enhancing recommendation performance. To tackle these challenges, we propose a novel recommendation model named Dual-Intent-View Contrastive Learning network (DIVCL), inspired by recent advancements in contrastive and intent learning. DIVCL employs a dual-view representation learning approach using Graph Neural Networks (GNNs), consisting of two distinct views: a local view based on the user-item interaction graph and a global view based on the user-item-entity knowledge graph.
View Article and Find Full Text PDFNeural Netw
January 2025
School of Computer and Control Engineering, Yantai University, YanTai, 264005, China. Electronic address:
Recommender systems are widely used in various applications. Knowledge graphs are increasingly used to improve recommendation performance by extracting valuable information from user-item interactions. However, current methods do not effectively use fine-grained information within the knowledge graph.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Group of Analysis, Security and Systems (GASS), Department of Software Engineering and Artificial Intelligence (DISIA), Faculty of Computer Science and Engineering, Office 431, Universidad Complutense de Madrid (UCM), Calle Profesor José García Santesmases, 9, Ciudad Universitaria, 28040 Madrid, Spain.
Conducting penetration testing (pentesting) in cybersecurity is a crucial turning point for identifying vulnerabilities within the framework of Information Technology (IT), where real malicious offensive behavior is simulated to identify potential weaknesses and strengthen preventive controls. Given the complexity of the tests, time constraints, and the specialized level of expertise required for pentesting, analysis and exploitation tools are commonly used. Although useful, these tools often introduce uncertainty in findings, resulting in high rates of false positives.
View Article and Find Full Text PDFBMC Med Inform Decis Mak
January 2025
Department of Public Health Sciences, Clemson University, Clemson, SC, USA.
Background: Rich data on diverse patients and their treatments and outcomes within Electronic Health Record (EHR) systems can be used to generate real world evidence. A health recommender system (HRS) framework can be applied to a decision support system application to generate data summaries for similar patients during the clinical encounter to assist physicians and patients in making evidence-based shared treatment decisions.
Objective: A human-centered design (HCD) process was used to develop a HRS for treatment decision support in orthopaedic medicine, the Informatics Consult for Individualized Treatment (I-C-IT).
Neural Netw
December 2024
School of Engineering, RMIT University, Melbourne, Australia. Electronic address:
Recommendation systems are vital tools for helping users discover content that suits their interests. Collaborative filtering methods are one of the techniques employed for analyzing interactions between users and items, which are typically stored in a sparse matrix. This inherent sparsity poses a challenge because it necessitates accurately and effectively filling in these gaps to provide users with meaningful and personalized recommendations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!