Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The ATP-sensitive potassium channels and their regulatory subunits, sulfonylurea receptor 1 (SUR1/Kir6.2) and SUR2/Kir6.1, contribute to the pathophysiology of pulmonary hypertension (PH). Loss-of-function pathogenic variants in the gene, which encodes for SUR1, have been associated with heritable pulmonary arterial hypertension. Conversely, activation of SUR1 and SUR2 leads to the relaxation of pulmonary arteries and reduces cell proliferation and migration. Diazoxide, a SUR1 activator, has been shown to alleviate experimental PH, suggesting its potential as a therapeutic option. However, there are paradoxical reports of diazoxide-induced PH in infants. This review explores the role of SUR1/2 in the pathophysiology of PH and the contradictory effects of diazoxide on the pulmonary vascular bed. Additionally, we conducted a comprehensive literature review of cases of diazoxide-associated PH and analysed data from the World Health Organization pharmacovigilance database (VigiBase). Significant disproportionality signals link diazoxide to PH, while no other SUR activators have been connected with pulmonary vascular disease. Diazoxide-associated PH seems to be dose-dependent and potentially related to acute effects on the pulmonary vascular bed. Further research is required to decipher the differing pulmonary vascular consequences of diazoxide in different age populations and experimental models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10641583 | PMC |
http://dx.doi.org/10.1183/23120541.00350-2023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!