Introduction: This paper presents an innovative Intelligent Robot Sports Competition Tactical Analysis Model that leverages multimodal perception to tackle the pressing challenge of analyzing opponent tactics in sports competitions. The current landscape of sports competition analysis necessitates a comprehensive understanding of opponent strategies. However, traditional methods are often constrained to a single data source or modality, limiting their ability to capture the intricate details of opponent tactics.
Methods: Our system integrates the Swin Transformer and CLIP models, harnessing cross-modal transfer learning to enable a holistic observation and analysis of opponent tactics. The Swin Transformer is employed to acquire knowledge about opponent action postures and behavioral patterns in basketball or football games, while the CLIP model enhances the system's comprehension of opponent tactical information by establishing semantic associations between images and text. To address potential imbalances and biases between these models, we introduce a cross-modal transfer learning technique that mitigates modal bias issues, thereby enhancing the model's generalization performance on multimodal data.
Results: Through cross-modal transfer learning, tactical information learned from images by the Swin Transformer is effectively transferred to the CLIP model, providing coaches and athletes with comprehensive tactical insights. Our method is rigorously tested and validated using Sport UV, Sports-1M, HMDB51, and NPU RGB+D datasets. Experimental results demonstrate the system's impressive performance in terms of prediction accuracy, stability, training time, inference time, number of parameters, and computational complexity. Notably, the system outperforms other models, with a remarkable 8.47% lower prediction error (MAE) on the Kinetics dataset, accompanied by a 72.86-second reduction in training time.
Discussion: The presented system proves to be highly suitable for real-time sports competition assistance and analysis, offering a novel and effective approach for an Intelligent Robot Sports Competition Tactical Analysis Model that maximizes the potential of multimodal perception technology. By harnessing the synergies between the Swin Transformer and CLIP models, we address the limitations of traditional methods and significantly advance the field of sports competition analysis. This innovative model opens up new avenues for comprehensive tactical analysis in sports, benefiting coaches, athletes, and sports enthusiasts alike.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10642548 | PMC |
http://dx.doi.org/10.3389/fnbot.2023.1275645 | DOI Listing |
Arch Sex Behav
January 2025
Department of Health Psychology, University of Alicante, Alicante, Spain.
J Sport Rehabil
January 2025
Exercise Science and Neuroscience Unit, Department of Exercise & Health, Paderborn University, Paderborn, Germany.
Context: Traditional assessments of high-order neurocognitive functions are conducted using pen and paper or computer-based tests; this neglects the complex motor actions athletes have to make in team ball sports. Previous research has not explored the combination of neurocognitive functions and motor demands through complex tasks for team ball sport athletes. The primary aim of the present study was to determine the construct validity of agility-based neurocognitive tests of working memory (WM) and inhibition.
View Article and Find Full Text PDFPediatr Exerc Sci
January 2025
Youth Physical Development Centre, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff,United Kingdom.
Purpose: Relative age effects and biological maturation are common biases within youth talent identification and development programs; however, their respective influence on youth weightlifting is unknown.
Method: Skeletal age, determined from ultrasonography, and competitive total loads (kg) were collected in 49 national age group weightlifters (boys: n = 24, age = 13.8 [2.
Anal Chem
January 2025
Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China.
Oxymetholone and methasterone are anabolic androgenic steroids prohibited by the World Anti-Doping Agency (WADA) for both in-competition and out-of-competition use. Detecting metabolites of exogenous steroids is crucial for establishing doping violations, making the study of these metabolites essential in antidoping efforts. This study investigated the urinary metabolic profiles of oxymetholone and methasterone using gas chromatography-orbitrap high-resolution mass spectrometry (GC-Orbitrap-HRMS) in nanogram level by utilizing a novel multiplex nontargeted framework protocol.
View Article and Find Full Text PDFSports Biomech
January 2025
School of Sport, Rehabilitation, and Exercise Sciences, University of Essex, Colchester, UK.
This study aimed to examine differences in isometric peak force (PF) at the start of the first pull, transition, and second pull phases of the clean, and determine their contribution in explaining the variance in snatch and clean & jerk (C&J) performance. Thirty-one national and international level male and female weightlifters participated. Isometric start position pull (ISPP), isometric transition position pull (ITPP), and isometric mid-thigh pull (IMTP) PF, along with competition performance, were analysed both in absolute and allometrically scaled terms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!