A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cold-induced muscle atrophy in zebrafish: Insights from swimming activity and gene expression analysis. | LitMetric

The investigation into the effects of cold acclimation on fish skeletal muscle function and its potential implications for muscle atrophy is of great interest to us. This study examines how rearing zebrafish at low temperatures affects their locomotor activity and the expression of genes associated with muscle atrophy. Zebrafish were exposed to temperatures ranging from 10 °C to 25 °C, and their swimming distance was measured. The expression levels of important muscle atrophy genes, Atrogin-1 and MuRF1, were also evaluated. Our findings show that swimming activity significantly decreases when the water temperature ranges from 10 °C to 15 °C, indicating a decrease in voluntary movement. Additionally, gene expression analysis shows a significant increase in the expression of Atrogin-1 and MuRF1 at 10 °C. This up-regulation could lead to muscle atrophy caused by decreased activity in cold temperatures. To investigate the effects of exercise on reducing muscle atrophy, we subjected zebrafish to forced swimming at a temperature of 8 °C for ten days. This treatment significantly reduced the expression of Atrogin-1 and MuRF1, emphasizing the importance of muscle stimulation in preventing muscle atrophy in zebrafish. These findings suggest that zebrafish can serve as a valuable model organism for studying muscle atrophy and can be utilized in drug screening for muscle atrophy-related disorders. Cold-reared zebrafish provide a practical and ethical approach to inducing disuse muscle atrophy, providing valuable insights into potential therapeutic strategies for addressing skeletal muscle atrophy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10641114PMC
http://dx.doi.org/10.1016/j.bbrep.2023.101570DOI Listing

Publication Analysis

Top Keywords

muscle atrophy
40
atrophy zebrafish
12
muscle
12
atrogin-1 murf1
12
atrophy
10
swimming activity
8
gene expression
8
expression analysis
8
skeletal muscle
8
expression atrogin-1
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!