Introduction: Genomic selection (GS) experiments in forest trees have largely reported estimates of predictive abilities from cross-validation among individuals in the same breeding generation. In such conditions, no effects of recombination, selection, drift, and environmental changes are accounted for. Here, we assessed the effectively realized predictive ability (RPA) for volume growth at harvest age by GS across generations in an operational reciprocal recurrent selection (RRS) program of hybrid .
Methods: Genomic best linear unbiased prediction with additive (GBLUP_G), additive plus dominance (GBLUP_G+D), and additive single-step (HBLUP) models were trained with different combinations of growth data of hybrids and pure species individuals ( = 17,462) of the G generation, 1,944 of which were genotyped with ~16,000 SNPs from SNP arrays. The hybrid G progeny trial (HPT267) was the GS target, with 1,400 selection candidates, 197 of which were genotyped still at the seedling stage, and genomically predicted for their breeding and genotypic values at the operational harvest age (6 years). Seedlings were then grown to harvest and measured, and their pedigree-based breeding and genotypic values were compared to their originally predicted genomic counterparts.
Results: Genomic RPAs ≥0.80 were obtained as the genetic relatedness between G and G increased, especially when the direct parents of selection candidates were used in training. GBLUP_G+D reached RPAs ≥0.70 only when hybrid or pure species data of G were included in training. HBLUP was only marginally better than GBLUP. Correlations ≥0.80 were obtained between pedigree and genomic individual ranks. Rank coincidence of the top 2.5% selections was the highest for GBLUP_G (45% to 60%) compared to GBLUP_G+D. To advance the pure species RRS populations, GS models were best when trained on pure species than hybrid data, and HBLUP yielded ~20% higher predictive abilities than GBLUP, but was not better than ABLUP for ungenotyped trees.
Discussion: We demonstrate that genomic data effectively enable accurate ranking of eucalypt hybrid seedlings for their yet-to-be observed volume growth at harvest age. Our results support a two-stage GS approach involving family selection by average genomic breeding value, followed by within-top-families individual GS, significantly increasing selection intensity, optimizing genotyping costs, and accelerating RRS breeding.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10641691 | PMC |
http://dx.doi.org/10.3389/fpls.2023.1252504 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!