Objectives: This study aimed to assess the effect of addition of fluorohydroxyapatite (FHI) on biological and physical properties of mineral trioxide aggregate (MTA) Angelus.

Materials And Methods: In this in vitro, experimental study, nano-FHI powder was first synthesized, and the morphology and chemical structure of particles were evaluated by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). Three groups were evaluated in this study: MTA Angelus, MTA modified with 10% FHA, and MTA modified with 15% FHA. After mixing, the materials were applied to ring molds (10 mm diameter, 1 mm height), and the setting time of the three groups was evaluated according to ISO6876 and ASTMC266-03 with a Gillmore needle. The pH was measured using a pH meter at 24 and 48 hours and 7 days after mixing. The cytotoxicity of the materials was assessed in freshly mixed form and after 1 and 7 days using the methyl thiazolyl tetrazolium (MTT) assay according to ISO10993-5. Data were analyzed by one-way and repeated measures ANOVA and Tukey's test (alpha = 0.05).

Results: The addition of FHA to MTA significantly decreased the initial setting time ( < 0.05) and had no significant effect on cell viability (compared with pure MTA Angelus) at 1 and 7 days. However, modified MTA groups in freshly mixed form showed significantly lower cell viability ( < 0.05). The pH remained alkaline at all time points.

Conclusion: Addition of 15% FHA to MTA Angelus decreased its setting time with no adverse effect on cell viability (except for fresh form) or pH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643032PMC
http://dx.doi.org/10.1155/2023/7532898DOI Listing

Publication Analysis

Top Keywords

biological physical
8
physical properties
8
mta angelus
8
three groups
8
groups evaluated
8
mta modified
8
fha mta
8
setting time
8
mta
6
fluorohydroxyapatite biological
4

Similar Publications

Variable relative biological effectiveness (RBE) of carbon radiotherapy may be calculated using several models, including the microdosimetric kinetic model (MKM), stochastic MKM (SMKM), repair-misrepair-fixation (RMF) model, and local effect model I (LEM), which have not been thoroughly compared. In this work, we compared how these four models handle carbon beam fragmentation, providing insight into where model differences arise. Monoenergetic and spread-out Bragg peak carbon beams incident on a water phantom were simulated using Monte Carlo.

View Article and Find Full Text PDF

A novel exercise protocol for cardiac rehabilitation aerobic (CRA) has been developed by Hebei Sport University, demonstrating efficacy in patients with coronary heart disease (CHD). The objective of this study was to evaluate the impact of CRA on precise cardiac rehabilitation (CR) for CHD patients presenting with stable angina pectoris. The study cohort comprised patients with stable angina who were categorized into three groups: the CRA group (n = 35), the power bicycles (PB) group (n = 34), and the control group (n = 43).

View Article and Find Full Text PDF

Skin homeostasis is strongly dependent on its hydration levels, making skin water content measurement vital across various fields, including medicine, cosmetology, and sports science. Noninvasive diagnostic techniques are particularly relevant for clinical applications due to their minimal risk of side effects. A range of optical methods have been developed for this purpose, each with unique physical principles, advantages, and limitations.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome (PRRS) is an endemic disease affecting the swine industry. The disease is caused by the PRRS virus (PRRSV). Despite extensive biosecurity and control measures, the persistence and seasonality of the virus have raised questions about the virus's environmental dynamics during the fall season when the yearly epidemic onset begins and when crop harvesting and manure incorporation into the field occur.

View Article and Find Full Text PDF

Since the discovery of the Australia antigen, now known as the hepatitis B surface antigen (HBsAg), significant research has been conducted to elucidate its physical, chemical, structural, and functional properties. Subviral particles (SVPs) containing HBsAg are highly immunogenic, non-infectious entities that have not only revolutionized vaccine development but also provided critical insights into HBV immune evasion and viral assembly. Recent advances in cryo-electron microscopy (cryo-EM) have uncovered the heterogeneity and dynamic nature of spherical HBV SVPs, emphasizing the essential role of lipid-protein interactions in maintaining particle stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!