The brain protection of MLKL inhibitor necrosulfonamide against focal ischemia/reperfusion injury associating with blocking the nucleus and nuclear envelope translocation of MLKL and RIP3K.

Front Pharmacol

Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Department of Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China.

Published: October 2023

Mixed lineage kinase like protein (MLKL) is a key mediator of necroptosis. While previous studies highlighted the important role of MLKL as one of the central regulators of brain damage against acute ischemic neuronal injury, how the activation of MLKL mediates brain injuries and cell death remains unclear, especially in astrocytes. In a transient middle cerebral artery occlusion (tMCAO) rat model , and an oxygen-glucose deprivation and reoxygenation (OGD/Re) injury model in both primary cultured astrocytes and human astrocytes, we show that necrosulfonamide (NSA), a MLKL specific inhibitor, reduces infarction volume and improves neurological deficits in tMCAO-treated rats. In addition, NSA treatment, as well as RIP1K inhibitor Nec-1 or RIP3K inhibitor GSK-872 treatment, decreases the OGD/Re-induced leakage of LDH in both primary cultured astrocytes and human astrocytes. NSA treatment also reduces the number of propidium iodide (PI)-positive cells, and prevents the upregulation of necroptotic biomarkers such as MLKL/p-MLKL, RIP3K/p-RIP3K, and RIP1K/p-RIP1K in ischemic penumbra of cerebral cortex in tMCAO-treated rats or in OGD/Re-treated human astrocytes. Importantly, NSA treatment blocks both the nucleus and nuclear envelope localization of MLKL/p-MLKL and RIP3K/p-RIP3K in ischemic cerebral cortex induced by tMCAO. Similarly, Co-immunoprecipitation assay shows that NSA treatment decreases tMCAO- or OGD/Re- induced increased combination of MLKL and RIP3K in nuclear envelope of ischemic penumbra of cerebral cortex or of primary cultured astrocytes, respectively. RIP3K inhibitor GSK-872 also reduces tMCAO-induced increased combination of MLKL and RIP3K in nuclear envelope of ischemic penumbra of cerebral cortex. These data suggest NSA exerts protective effects against focal ischemia/reperfusion injury via inhibiting astrocytic necroptosis through preventing the upregulation of necroptotic kinases as well as blocking both the nucleus and nuclear envelope co-localization of p-MLKL and p-RIP3K. The translocation of p-MLKL, along with p-RIP3K, to the nuclear envelope and the nucleus may play a crucial role in MLKL-mediated necroptosis under ischemic conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10642205PMC
http://dx.doi.org/10.3389/fphar.2023.1157054DOI Listing

Publication Analysis

Top Keywords

nuclear envelope
24
nsa treatment
16
cerebral cortex
16
nucleus nuclear
12
mlkl rip3k
12
primary cultured
12
cultured astrocytes
12
human astrocytes
12
ischemic penumbra
12
penumbra cerebral
12

Similar Publications

(Lepidoptera: Nolidae) is a major pest of cotton and other crops in Egypt, and the widespread use of insecticides has led to resistance. This study evaluates, for the first time, the bioactivity of (Malpighiales: Euphorbiaceae) oil and its nano-emulsion (CTNE) against 25 newly hatched larvae of Boisd. We assessed their biological effects across different developmental stages and performed histological and ultrastructural examinations.

View Article and Find Full Text PDF

The aim of the present research is the isolation and morphological and molecular-phenological identification of nematophagous fungi of Southern Kazakhstan for the production of effective bionematicides on their basis. Nematophagous fungi, which include nematode-trapping, ovicidal, endoparasitic, toxin-producing, and special substance-producing fungi, are among the most effective biological agents in controlling phytoparasitic nematodes. To isolate and characterize nematophagous fungi, soil samples were collected at 12 sites in three regions of Southern Kazakhstan.

View Article and Find Full Text PDF

Lipid role in synapse and nuclear envelope-associated endocytic pathways in Tauopathy.

Adv Protein Chem Struct Biol

January 2025

Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India.

Lipids play an essential role in synaptic function, significantly impacting synaptic physiology through their dynamic nature and signaling capabilities. Membrane lipids, including cholesterol, phospholipids, and gangliosides, are crucial for synaptic organization and function. They act as structural integrators and signaling molecules, guiding vesicle intracellular movement and regulating enzyme activity to support neuronal activity.

View Article and Find Full Text PDF

Nuclear transport protein suppresses Tau neurodegeneration.

Adv Protein Chem Struct Biol

January 2025

Neural Development Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, India.

The nuclear pore complex, a large multimeric structure consists of numerous protein components, serves as a crucial gatekeeper for the transport of macromolecules across the nuclear envelope in eukaryotic cells. Dysfunction of the NPC has been implicated in various neurodegenerative diseases, including Alzheimer's disease. In AD, Tau aggregates interact with NPC proteins, known as nucleoporins, leading to disruptions in nuclear transport.

View Article and Find Full Text PDF

Pushing the envelope - How the genome interacts with the nuclear envelope in health and disease.

Adv Protein Chem Struct Biol

January 2025

Genome Organisation and Dynamics Cluster, Center for Genome Engineering and Maintenance, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, London, United Kingdom. Electronic address:

The nuclear envelope has for long been considered more than just the physical border between the nucleoplasm and the cytoplasm, emerging as a crucial player in genome organisation and regulation within the 3D nucleus. Consequently, its study has become a valuable topic in the research of cancer, ageing and several other diseases where chromatin organisation is compromised. In this chapter, we will delve into its several sub-elements, such as the nuclear lamina, nuclear pore complexes and nuclear envelope proteins, and their diverse roles in nuclear function and maintenance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!