Mechanical ventilation serves as crucial life support for critically ill patients. Although it is life-saving prolonged ventilation carries risks and complications like barotrauma, Ventilator-associated pneumonia, sepsis, and many others. Optimizing patient-ventilator interactions and facilitating early weaning is necessary for improved intensive care unit (ICU) outcomes. Traditionally Pressure support ventilation (PSV) mode is widely used for weaning patients who are intubated and mechanically ventilated. Neurally adjusted ventilatory assist (NAVA) mode of the ventilator is an emerging ventilator mode that delivers pressure depending on the patient's respiratory drive, which in turn prevents over-inflation and improves the patient's ventilator interactions. Our article revises and compares the effectiveness of NAVA compared to PSV ventilation under different contexts. Overall we conclude that NAVA level of ventilation can be safely administered in a patient with acute respiratory failure, provided diaphragmatic paralysis is not considered. NAVA improves asynchrony index, wean-off time, and sleep quality and is associated with increased ventilator-free days. These results are based on small-scale studies with low power, and further studies are warranted in large-scale cohorts with more diverse populations to confirm these results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/08850666231212807 | DOI Listing |
NPJ Digit Med
January 2025
Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
Adaptive deep brain stimulation (DBS) provides individualized therapy for people with Parkinson's disease (PWP) by adjusting the stimulation in real-time using neural signals that reflect their motor state. Current algorithms, however, utilize condensed and manually selected neural features which may result in a less robust and biased therapy. In this study, we propose Neural-to-Gait Neural network (N2GNet), a novel deep learning-based regression model capable of tracking real-time gait performance from subthalamic nucleus local field potentials (STN LFPs).
View Article and Find Full Text PDFBMC Neurol
January 2025
Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, School of Medicine, College of Medicine, National Sun Yat-Sen University, No. 123 Ta-Pei Road, Niao-Sung Dist, Kaohsiung, 83305, Taiwan.
Background And Purpose: White matter hyperintensities in brain MRI are key indicators of various neurological conditions, and their accurate segmentation is essential for assessing disease progression. This study aims to evaluate the performance of a 3D convolutional neural network and a 3D Transformer-based model for white matter hyperintensities segmentation, focusing on their efficacy with limited datasets and similar computational resources.
Materials And Methods: We implemented a convolution-based model (3D ResNet-50 U-Net with spatial and channel squeeze & excitation) and a Transformer-based model (3D Swin Transformer with a convolutional stem).
Nat Hum Behav
January 2025
Department of Psychological and Brain Sciences, Washington University in St. Louis, St Louis, MO, USA.
Goal-directed behaviour requires humans to constantly manage and switch between multiple, independent and conflicting sources of information. Conventional cognitive control tasks, however, only feature one task and one source of distraction. Therefore, it is unclear how control is allocated in multidimensional environments.
View Article and Find Full Text PDFInt J Clin Oncol
January 2025
Rare Cancer Center, National Cancer Center, Tokyo, Japan.
Background: Melanoma is a highly malignant cancer responsible for 55 000 deaths worldwide annually. Despite its severity, its epidemiology in Japan remains understudied owing to its rarity among Asians. This study aimed to determine the incidence of melanoma in Japan using data from the National Cancer Registry.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
ADBS Lab, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India.
Background: What does neurodevelopment look like when neurodegeneration is the outcome - this is overarching theme of investigations currently ongoing in our lab. The E4 isoform of ApoE protein is the most consistently replicated risk factor in Alzheimer's Disease (AD). And yet, much remains unknown about the biological pathways that connect APOE4 genotype with the development of pathology that eventually leads to AD, nor do we know how early in life these cellular alterations begin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!