Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Herein, a novel organic transformation involving rhodium-catalyzed divergent dehydroxylation/alkenylation of hydroxyisoindolinone with vinylene carbonate is reported, and a series of architecturally rigid and widely used spirolactams are obtained with excellent functional group tolerance and high selectivity. Remarkably, the promising vinylene carbonate reagent presents a distinct chemical reactivity as a vinyl-oxygen cyclic synthon and first transfers the C-H bond to spiroheterocycle scaffolds. Moreover, another chemoselectivity, direct dehydrogenative coupling with vinylene carbonate, is also presented. This protocol is compatible with green chemistry and only releases HO and CO as byproducts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cc03760f | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!