Background: Pediatric hematological cancer survivors who undergo hematopoietic stem cell transplantation (HSCT) may experience long-term neurocognitive impairments. This systematic review aims to assess the neurocognitive outcomes in pediatric hematological cancer survivors at least 5 years post-HSCT.
Methodology: A comprehensive search was conducted in multiple databases, including PubMed, ScienceDirect, Cochrane Library, and ClinicalTrials.gov, until October 2022. Relevant studies assessing the neurocognitive affect after 5 years of HSCT were identified and included in the review. The quality of included studies was assessed using the ROBINS-I tool to evaluate the risk of bias.
Results: A total of five studies met the inclusion criteria and were included in the review. The studies consistently demonstrated adverse effects of HSCT on neurocognitive outcomes in pediatric hematological cancer survivors after 5 years of the treatment. The most prominent impact was observed on global cognitive outcomes, including intelligence, attention, memory, and executive functioning. Specific cognitive domains, such as processing speed and academic achievement, were also significantly affected. Several studies reported a relationship between HSCT-related factors (e.g., age at transplantation, radiation therapy, graft-versus-host disease) and neurocognitive impairments.
Conclusion: This systematic review provides evidence of the adverse impact of HSCT on neurocognitive outcomes in pediatric hematological cancer survivors at least 5 years post-transplantation. The findings highlight the importance of long-term monitoring and intervention strategies to mitigate these neurocognitive sequelae. Future research should focus on identifying risk factors and developing targeted interventions to optimize the neurocognitive functioning of this vulnerable population. Healthcare professionals involved in the care of pediatric hematological cancer survivors should be aware of these potential long-term neurocognitive effects and incorporate appropriate assessments and interventions into survivorship care plans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ctr.15193 | DOI Listing |
Sci Rep
December 2024
International Collaboration On Repair Discoveries, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
Cytokine storm syndromes such as hemophagocytic lymphohistiocytosis (HLH), Adult-onset Still's disease (AOSD), and COVID-19 cytokine storm (CCS) are characterized by markedly elevated inflammatory cytokines. However clinical measurement of serum cytokines is not widely available. This study examined the clinical utility of C-reactive protein (CRP) and ferritin, two inexpensive and widely available inflammatory markers, for distinguishing HLH from AOSD and CCS.
View Article and Find Full Text PDFBioorg Med Chem
December 2024
State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China. Electronic address:
X-ray repair cross-complementing 2 (XRCC2), a critical protein in homologous recombination (HR), plays a significant role in the occurrence, progression, and drug resistance of colorectal cancer (CRC). In this study, a series of xanthohumol C derivatives were synthesized, and their anticancer activity was evaluated. The results revealed that A33 demonstrated the potent anticancer activity and effectively inhibited the proliferation of CRC cells in vitro.
View Article and Find Full Text PDFImmunity
December 2024
Department of Immunology, Harvard Medical School, Boston, MA, USA. Electronic address:
Thymic mimetic cells are molecular hybrids between medullary-thymic-epithelial cells (mTECs) and diverse peripheral cell types. They are involved in eliminating autoreactive T cells and can perform supplementary functions reflective of their peripheral-cell counterparts. Current knowledge about mimetic cells derives largely from mouse models.
View Article and Find Full Text PDFNeuro Oncol
December 2024
Genetics Department, Institut Curie, Paris, France.
Background: Medulloblastoma (MB) is one of the most prevalent embryonal malignant brain tumors. Current classification organizes these tumors into four molecular subgroups (WNT, SHH, Group 3, and Group 4 MB). Recently, a comprehensive classification has been established, identifying numerous subtypes, some of which exhibit a poor prognosis.
View Article and Find Full Text PDFLeuk Lymphoma
December 2024
Division of Pediatric Hematology-Oncology, First Department of Pediatrics, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!