We successfully tune ultralong organic room-temperature phosphorescence (UORTP) by a simple strategy of precisely modifying nitrogen atoms on , and colorful ultralong phosphorescence can be achieved. We for the first time investigate the structure-function relationship between phosphorescence properties and molecular structures of . With BCz and BCz-1 as comparison, eight new were synthesized by introducing one or two nitrogen atoms to the naphthalene moiety. For all the 10 , their room-temperature ultralong phosphorescence in the PMMA film should be assigned to monomer phosphorescence from intrinsic T decay. For series I (BCz, NBCz-1, NBCz-2, NBCz-3, NBCz-4, NBCz-5, and NBCz-6), introducing one nitrogen atom to the naphthalene moiety can significantly affect the phosphorescence properties of , and the effect is quite complicated. For modification on the inner ring, the T energy level of NBCz-1 decreases, and the red shift of UORTP occurs while the T energy level of NBCz-2 increases and the blue shift of UORTP happens. For modification on the outer ring, no phosphorescence color change is observed for NBCz-3 and NBCz-4, but their phosphorescence lifetimes vary notably due to different intersystem crossing efficiencies; as the modification site approaches the central five-member ring, the T energy levels of NBCz-5 and NBCz-6 decrease, and their UORTP red shifts dramatically. For series II (BCz, 2NBCz, BCz-1, and 2NBCz-1), introducing two nitrogen atoms to the outer six-member ring reduces energy level of T excitons and leads to incredible red shift of UORTP for BCz and 2NBCz while surprisingly energy levels of T excitons rise and UORTP blue shifts for BCz-1 and 2NBCz-1. Under the condition of proper modification sites, it is true that the more the additional nitrogen atoms, the more red-shifted the ultralong phosphorescence. This study may expand our knowledge of organic phosphorescence and lay the foundation for its future applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c14054DOI Listing

Publication Analysis

Top Keywords

nitrogen atoms
20
phosphorescence
12
ultralong phosphorescence
12
introducing nitrogen
12
energy level
12
shift uortp
12
colorful ultralong
8
ultralong organic
8
organic room-temperature
8
room-temperature phosphorescence
8

Similar Publications

Atomically dispersed rare earth dysprosium-nitrogen-carbon for boosting oxygen reduction reaction.

J Colloid Interface Sci

January 2025

Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China. Electronic address:

Transition metal-nitrogen-carbon (MNC) based on 3d metal atoms as promising non-precious metal catalysts have been extensively exploited for oxygen reduction reaction (ORR), but MNC with 4f rare earth metals have been largely ignored, most likely due to their large atomic radii that are difficult to coordinate with N dopants using conventional precursors. Herein, atomically dispersed dysprosium-nitrogen-carbon (DyNC) nanosheets were developed via the pyrolysis of anitrogen-containing chelate compound of 2, 4, 6-Tri (2-pyridyl) 1, 3, 5-triazine (TPTZ) ligand with Dy under the assistance of molten NaCl. The as-synthesized DyNC features specific moieties of single Dy atom coordinated by N and O as active sites for ORR, displaying excellent performance.

View Article and Find Full Text PDF

Potassium metal batteries are emerging as a promising high-energy density storage solution, valued for their cost-effectiveness and low electrochemical potential. However, understanding the role of potassiphilic sites in nucleation and growth remains challenging. This study introduces a single-atom iron, coordinated by nitrogen atoms in a 3D hierarchical porous carbon fiber (Fe─N-PCF), which enhances ion and electron transport, improves nucleation and diffusion kinetics, and reduces energy barriers for potassium deposition.

View Article and Find Full Text PDF

The asymmetric Schiff base prepared from ethylenediamine and pyridine-2-carboxaldehyde reacts with Fe(ClO)·6HO to form the Fe(II) complex [FeL](ClO) with L = ,-diethyl-'-(pyridin-2-yl)methylene)ethane-1,2-diamine, where the Fe(III) starting material has been unexpectedly reduced to Fe(II). This complex was characterized by elemental analysis, infrared spectra, single crystal and powder X-ray diffraction measurements, variable temperature DC magnetic measurement and room temperature Mössbauer spectroscopy. The asymmetric ligand L coordinates in a tridentate fashion through its pyridyl, azomethine and amino nitrogen atoms, generating a distorted octahedral geometry around the central metal ion.

View Article and Find Full Text PDF

Heterocyclic compounds are increasingly used in medicinal chemistry because they are the main components of many biological processes and materials. Benzimidazole remains the core center of the heterocyclic chemical group, with essential traits such as six-five-member connected rings and two nitrogen atoms at the 1,3 position in a six-membered benzene and five-membered imidazole- fused ring system. Molecules with benzimidazole derivatives serve important functions as therapeutic agents and have shown excellent results in clinical and biological research.

View Article and Find Full Text PDF

Excited-state proton transfer (ESPT) in organic photoacids is a widely studied phenomenon in which D-luciferin is of special mention, considering the fact that apart from its phenolic OH group, the nitrogen atoms at either of the two thiazole moieties could also participate in hydrogen bonding interactions with a proton-donating solvent during ESPT. As a result, several transient species could appear during the ESPT process. We hereby deploy subpicosecond time-resolved fluorescence upconversion (FLUP) and transient absorption (TA) spectroscopic techniques to understand the detailed photophysics of D-luciferin in water as well as in dimethyl sulfoxide (DMSO) and ethanol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!