A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparative theoretical study of CO activation on clean and potassium-preadsorbed low index surfaces of transition metals. | LitMetric

Comparative theoretical study of CO activation on clean and potassium-preadsorbed low index surfaces of transition metals.

J Mol Model

Frontiers Science Center for New Organic Matter, Tianjin Key Lab and Molecule-Based Material Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.

Published: November 2023

Context: The efficient catalysis of CO adsorption and activation presents a formidable challenge due to its pronounced thermodynamic stability and kinetic inertia. Previous experiments have left gaps in understanding the promotional effects and underlying mechanism of potassium. In this study, we systematically investigate CO adsorption and activation on clean and potassium-preadsorbed low index surfaces of transition metals. Theoretical results reveal a substantial augmentation in CO binding strength when potassium is introduced, concomitant with a general reduction in activation energies. Notably, linear correlations are significant on close-packed metal surfaces without and with potassium additive. Through a comprehensive analysis encompassing geometric parameters, electronic structures, and energy decomposition, we discern the physical underpinnings of the potassium effect. This enhancement is primarily ascribed to direct electron transfer and dipole-dipole interactions. Furthermore, we scrutinize the impact of an external electric field, demonstrating that the application of a negative electric field accelerates CO activation, mirroring the effects observed with potassium.

Methods: All the periodic density function theory (DFT) calculations were performed by the Vienna Ab Initio Simulation package (VASP). The interaction between nucleus and valence electron was described using the pseudopotentials found in the projector augmented wave method (PAW). Throughout the entire work, the Bayesian error estimation functional (BEEF) was used.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-023-05784-1DOI Listing

Publication Analysis

Top Keywords

activation clean
8
clean potassium-preadsorbed
8
potassium-preadsorbed low
8
low surfaces
8
surfaces transition
8
transition metals
8
adsorption activation
8
electric field
8
activation
5
comparative theoretical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!