Armed conflicts have, in addition to severe impacts on human lives and infrastructure, also impacts on the environment, which needs to be assessed and documented. On September the 26th 2022, unknown perpetrators deliberately ruptured the two gas pipelines Nord Stream 1 and 2 with four coordinated explosions near a major chemical munition dump site near the Danish island of Bornholm in the Baltic Sea. While the massive release of natural gas into atmosphere raised serious concerns concerning the contribution to climate change-this paper assesses the overlooked direct impact of the explosions on the marine ecosystem. Seals and porpoises within a radius of four km would be at high risk of being killed by the shockwave, while temporary impact on hearing would be expected up to 50 km away. As the Baltic Proper population of harbour porpoises (Phocoena phocoena) is critically endangered, the loss or serious injury of even a single individual is considered a significant impact on the population. The rupture moreover resulted in the resuspension of 250000 metric tons of heavily contaminated sediment from deep-sea sedimentary basin for over a week, resulting in unacceptable toxicological risks towards fish and other biota in 11 km water in the area for more than a month.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10646109PMC
http://dx.doi.org/10.1038/s41598-023-47290-7DOI Listing

Publication Analysis

Top Keywords

nord stream
8
environmental impact
4
impact explosion
4
explosion nord
4
stream pipelines
4
pipelines armed
4
armed conflicts
4
conflicts addition
4
addition severe
4
severe impacts
4

Similar Publications

Methane emissions from the Nord Stream subsea pipeline leaks.

Nature

January 2025

Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, China.

The amount of methane released to the atmosphere from the Nord Stream subsea pipeline leaks remains uncertain, as reflected in a wide range of estimates. A lack of information regarding the temporal variation in atmospheric emissions has made it challenging to reconcile pipeline volumetric (bottom-up) estimates with measurement-based (top-down) estimates. Here we simulate pipeline rupture emission rates and integrate these with methane dissolution and sea-surface outgassing estimates to model the evolution of atmospheric emissions from the leaks.

View Article and Find Full Text PDF

Airborne observations reveal the fate of the methane from the Nord Stream pipelines.

Nat Commun

January 2025

Deutsches Zentrum für Luft- und Raumfahrt e.V., Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany.

The Nord Stream pipeline leaks on 26 September 2022 released 465 ± 20 kt of methane into the atmosphere, which is the largest recorded transient anthropogenic methane emission event. While most of the gas escaped directly to the atmosphere, a fraction dissolved in the water. So far, studies on the fate of this dissolved methane rely on pipeline volumetric estimates or spatially sparse concentration measurements and ocean models.

View Article and Find Full Text PDF

A suspected 443-486 kt of methane escaped from the Nord Stream pipelines in September 2022 at four explosion sites across three pipelines. Much of this methane rapidly escaped to the atmosphere, while an unknown amount was dissolved. We use sustained high-resolution observations of methane concentrations from autonomous gliders and an instrumented ship of opportunity to reveal the timing and spread of dissolved methane across different Baltic regions and marine protected areas.

View Article and Find Full Text PDF

Perfluoroalkyl substances (PFASs) in groundwater and surface water in the Turin metropolitan area (Italy): An attempt to unravel potential point sources and compliance with environmental/drinking water quality standards.

Sci Total Environ

January 2025

Agenzia Regionale per la Protezione dell'Ambiente del Piemonte (ARPA Piemonte), Dipartimento Territoriale di Torino (Piemonte Nord Ovest), Via Pio VII 9, 10135 Torino, Italy.

The study investigated the contribution of five potential point source categories on the occurrence of 19 highly hazardous perfluoroalkyl substances (PFASs) in freshwater from the Turin metropolitan area (Italy) and assessed the quality of groundwater and surface water in compliance with European and Italian guidelines. PFASs were revealed in 29 and 24 % of the investigated shallow (unconfined aquifers) and deep (semi- and confined aquifers) wells with a total concentration, as a sum (ΣPFASs), of 0.01-0.

View Article and Find Full Text PDF
Article Synopsis
  • Produced water (PW) is a major waste product from offshore oil and gas extraction in the North Sea, but existing regulations mainly focus on aliphatic hydrocarbons and overlook other harmful compounds like BTEX and PAHs.
  • The study used purge and trap extraction followed by GC-MS analysis on Danish PW samples to identify and quantify volatile compounds, linking this data to toxicity assessments on bacteria, algae, and copepods.
  • The results showed that purging volatile compounds reduced toxicity by 37% to 65%, highlighting the need to understand PW composition better for developing effective wastewater management strategies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!