Improved materials for peripheral nerve repair are needed for the advancement of new surgical techniques in fields spanning from oncology to trauma. In this study, we developed bioresorbable materials capable of producing repeated electric field gradients spaced 600 μm apart to assess the impact on neuronal cell growth, and migration. Electrically conductive, biphasic composites comprised of poly (glycerol) sebacate acrylate (PGSA) alone, and doped with poly (pyrrole) (PPy), were prepared to create alternating segments with high and low electrically conductivity. Conductivity measurements demonstrated that 0.05% PPy added to PSA achieved an optimal value of 1.25 × 10 S/cm, for subsequent electrical stimulation. Tensile testing and degradation of PPy doped and undoped PGSA determined that 35-40% acrylation of PGSA matched nerve mechanical properties. Both fibroblast and neuronal cells thrived when cultured upon the composite. Biphasic PGSA/PPy sheets seeded with neuronal cells stimulated for with 3 V, 20 Hz demonstrated a 5x cell increase with 1 day of stimulation and up to a 10x cell increase with 3 days stimulation compared to non-stimulated composites. Tubular conduits composed of repeated high and low conductivity materials suitable for implantation in the rat sciatic nerve model for nerve repair were evaluated in vivo and were superior to silicone conduits. These results suggest that biphasic conducting conduits capable of maintaining mechanical properties without inducing compression injuries while generating repeated electric fields are a promising tool for acceleration of peripheral nerve repair to previously untreatable patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10645611 | PMC |
http://dx.doi.org/10.1007/s10856-023-06763-x | DOI Listing |
J Med Case Rep
December 2024
Division of Infectious Diseases, Denver Health Medical Center, Denver, CO, USA.
Background: Leprosy (Hansen's disease) is an infectious disease most common in resource-limited countries caused by the acid-fast bacilli Mycobacterium leprae and Mycobacterium lepromatosis that frequently affects the skin and peripheral nerves. Prompt diagnosis and treatment with multidrug therapy is crucial to reduce disease transmission and sequelae, which include nerve function impairment, ocular injury, and stigmatizing physical deformities. Traditional treatment of multibacillary leprosy consists of 12-24 months of multidrug therapy with dapsone, rifampin, and clofazimine.
View Article and Find Full Text PDFIntroduction: Available therapies for peripheral nerve injury (PNI) include surgical and non-surgical treatments. Surgical treatment includes neurorrhaphy, grafting (allografts and autografts) and tissue-engineered grafting (artificial nerve guide conduits), while non-surgical treatment methods include electrical stimulation, magnetic stimulation, laser phototherapy and administration of nerve growth factors. However, the treatments currently available to best manage the different PNI manifestations remain undetermined.
View Article and Find Full Text PDFJ Oral Maxillofac Surg
December 2024
PhD Adjunct Professor, in Oral and Maxillofacial Surgery, School of Dentistry, University of Pernambuco - UPE, Recife, Pernambuco, Brazil. Electronic address:
Background: Fluoxetine, a serotonin reuptake inhibitor antidepressant, raises extracellular serotonin levels and promotes angiogenesis and neurogenesis. Numerous animal models have shown its beneficial effects on recovery from peripheral nerve injury.
Purpose: The primary objective of this study was to analyze the influence of fluoxetine on the sensory-motor function recovery of the sciatic nerve in Wistar rats after axonotmesis.
Neurobiol Dis
December 2024
Department of Neurology, University Hospital of Wuerzburg, Germany. Electronic address:
DYT-THAP1 dystonia is a monogenetic form of dystonia, a movement disorder characterized by the involuntary co-contraction of agonistic and antagonistic muscles. The disease is caused by mutations in the THAP1 gene, although the precise mechanisms by which these mutations contribute to the pathophysiology of dystonia remain unclear. The incomplete penetrance of DYT-THAP1 dystonia, estimated at 40 to 60 %, suggests that an environmental trigger may be required for the manifestation of the disease in genetically predisposed individuals.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, 226001, China. Electronic address:
Ischemia and hypoxia caused by vascular injury intensify nerve damage. Skin precursor-derived Schwann cells have demonstrated an accelerated in vivo pre-vascularization of tissue-engineered nerves. Furthermore, extracellular vesicles from skin precursor-derived Schwann cells (SKP-SC-EVs) show the potential in aiding peripheral nerve regeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!