Endophytic bacterial communities in ungerminated and germinated seeds of commercial vegetables.

Sci Rep

Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile.

Published: November 2023

Chile is a prominent seed exporter globally, but the seed microbiome of vegetables (46% of seeds) and its role in the early stages of plant growth have remained largely unexplored. Here, we employed DNA metabarcoding analysis to investigate the composition and putative functions of endophytic bacterial communities in ungerminated and germinated seeds of the commercial vegetables Apiaceae (parsley and carrot), Asteraceae (lettuce), Brassicaceae (cabbage and broccoli), and Solanaceae (tomato). Bacterial quantification showed 10 to 10 copies of the 16S rRNA gene per gram of ungerminated and germinated seeds. Alpha diversity analysis (e.g., Chao1, Shannon, and Simpson indices) did not indicate significant differences (Kruskal-Wallis test) between ungerminated and germinated seeds, except for Solanaceae. However, beta diversity (PCoA) analysis showed distinctions (Adonis test) between ungerminated and germinated seeds, except Apiaceae. Pseudomonadota and Bacillota were identified as the dominant and specialist taxa in both ungerminated and germinated seed samples. Chemoheterotrophy and fermentation were predicted as the main microbial functional groups in the endophytic bacterial community. Notably, a considerable number of the 143 isolated endophytic strains displayed plant growth-promoting traits (10 to 64%) and biocontrol activity (74% to 82%) against plant pathogens (Xanthomonas and Pseudomonas). This study revealed the high variability in the abundance, diversity, composition, and functionality of endophytic bacteria between ungerminated and germinated seeds in globally commercialized vegetables. Furthermore, potential beneficial endophytic bacteria contained in their seed microbiomes that may contribute to the microbiome of the early stages, development, growth and progeny of vegetables were found.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10645892PMC
http://dx.doi.org/10.1038/s41598-023-47099-4DOI Listing

Publication Analysis

Top Keywords

ungerminated germinated
28
germinated seeds
24
endophytic bacterial
12
bacterial communities
8
communities ungerminated
8
seeds commercial
8
commercial vegetables
8
early stages
8
test ungerminated
8
endophytic bacteria
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!