A fundamental understanding of the electrochemical behavior of hybrid perovskite and nitrogen-doped (N-doped) carbon is essential for the development of perovskite-based electrocatalysts in various sustainable energy device applications. In particular, the selection and modification of suitable carbon support are important for enhancing the oxygen reduction reaction (ORR) of non-platinum group metal electrocatalysts in fuel cells. Herein, we address hybrid materials composed of three representative N-doped carbon supports (BP-2000, Vulcan XC-72 and P-CNF) with valid surface areas and different series of single, double and triple perovskites: BaSrCoFeO, (PrBa)CoO, and NdBaCoFeMnO (NBCFM), respectively. The combination of NBCFM and N-doped BP-2000 produces a half-wave potential of 0.74 V and a current density of 5.42 mA cm at 0.5 V versus reversible hydrogen electrode, comparable to those of the commercial Pt/C electrocatalyst (0.76 V, 5.21 mA cm). Based on physicochemical and electrochemical analyses, we have confirmed a significant improvement in the catalytic performance of low-conductivity perovskite catalyst in the ORR when nitrogen-doped carbon with enhanced electrical conductivity is introduced. Furthermore, it has been observed that nitrogen dopants play active sites, contributing to additional performance enhancement when hybridized with perovskite.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10645751 | PMC |
http://dx.doi.org/10.1038/s41598-023-47304-4 | DOI Listing |
ACS Omega
January 2025
Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
Carbon dots (CDs) are emerging novel fluorescent sensing nanomaterials owing to their tunable optical properties, biocompatibility, and eco-friendliness. Herein, we report a facile one-pot hydrothermal route for the synthesis of highly green fluorescent CDs using gallic acid (GA) as a single carbon source in ,-dimethylformamide (DMF) solvent, which serves as a nitrogen source and reaction medium. The optical properties of the synthesized GA-DMF CDs were systematically characterized by using UV-vis and photoluminescence spectroscopy, revealing strong green fluorescence.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030000, Shanxi, PR China. Electronic address:
In this study, carbon dots doped with silver and nitrogen (Ag,N-CDs) were synthesized and their application in chemiluminescence (CL) was investigated using the potassium ferricyanide/hydrogen peroxide (KFe(CN)/HO) reaction. Theoretical calculations reveal that Ag doping facilitates a lower excitation energy. The experimental conditions influencing the CL reaction were examined and optimized.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University (GXU), 100 Daxuedong Road, Xixiangtang District, Nanning 530004 China. Electronic address:
Porous carbons with large surface area (>3000 m/g) and heteroatom dopants have shown great promise as electrode materials for zinc ion hybrid capacitors. Centralized mesopores are effective to accelerate kinetics, and edge nitrogen can efficiently enhance pseudocapacitive capability. It is a great challenge to engineer centralized mesopores and edge nitrogen in large-surface-area porous carbons.
View Article and Find Full Text PDFMolecules
January 2025
State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
Niobium pentoxide (T-NbO) is a promising anode material for dual-ion batteries due to its high lithium capacity and fast ion storage and release mechanism. However, T-NbO suffers from the disadvantages of poor electrical conductivity and fast cycling capacity decay. Herein, a nitrogen-doped three-dimensional porous carbon (RMF) was prepared for loading niobium pentoxide to construct a composite system with excellent electrochemical performance.
View Article and Find Full Text PDFChemistry
January 2025
Nanjing University of Aeronautics and Astronautics, School of Materials Science and Engineering, 29 Yudao St., 210016, Nanjing, CHINA.
As a potential alternative to next-generation LIBs, carbonous materials have garnered significant attention as anode materials for potassium-ion batteries due to their low cost and environmental friendliness. However, carbonaceous materials cannot fulfill the demand of anode for PIBs, due to volume expansion and poor stability during charging/discharging process. It is well-known that N doping can provide active sites for K-storage, and expand the layer distance between graphite layers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!