"Preprocessing" is the first step required in brain image analysis that improves the overall quality and reliability of the results. However, it is computationally demanding and time-consuming, particularly to handle and parcellate complicatedly folded cortical ribbons of the human brain. In this study, we aimed to shorten the analysis time for data preprocessing of 1410 brain images simultaneously on one of the world's highest-performing supercomputers, "Fugaku." The FreeSurfer was used as a benchmark preprocessing software for cortical surface reconstruction. All the brain images were processed simultaneously and successfully analyzed in a calculation time of 17.33 h. This result indicates that using a supercomputer for brain image preprocessing allows big data analysis to be completed shortly and flexibly, thus suggesting the possibility of supercomputers being used for expanding large data analysis and parameter optimization of preprocessing in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10646110 | PMC |
http://dx.doi.org/10.1038/s41598-023-46073-4 | DOI Listing |
Pediatr Rheumatol Online J
December 2024
Section of Rheumatology, Department of Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Canada.
Background: Primary small vessel CNS vasculitis (sv-cPACNS) is a challenging inflammatory brain disease in children. Brain biopsy is mandatory to confirm the diagnosis. This study aims to develop and validate a histological scoring tool for diagnosing small vessel CNS vasculitis.
View Article and Find Full Text PDFCortex
December 2024
Normandie Univ, UNICAEN, PSL Université Paris, EPHE, Inserm, U1077, CHU de Caen, Centre Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France. Electronic address:
Healthy aging is characterized by frontal and diffuse brain changes, while certain age-related pathologies such as semantic dementia will be associated with more focal brain lesions, particularly in the temporo-parietal regions. These changes in structural integrity could influence functional brain networks. Here we use multilayer brain network analysis on structural (DWI) and functional (fMRI) data in younger and older healthy individuals and patients with semantic dementia.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
7T Magnetic Resonance Imaging Translational Medical Center, Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
Introduction: The choroid plexus (CP) may play a crucial role in brain degeneration. We aim to assess whether CP cysts (CPCs), defined using ultra-high field magnetic resonance imaging (MRI), relate to aging and neurodegeneration.
Methods: We used multi-sequence 7T MRI to observe CPCs, characterizing their presence and characteristics in healthy younger controls, healthy older controls (OCs), patients with Alzheimer's disease (AD), patients with Parkinson's disease (PD), and patients with uremic encephalopathy.
Alzheimers Dement
December 2024
Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
Alzheimers Dement
December 2024
Center on Aging Psychology, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
Introduction: Subjective cognitive decline (SCD) is linked to memory complaints and disruptions in certain brain regions identified by molecular imaging and resting-state functional magnetic resonance imaging studies. However, it remains unclear how these regions interact to contribute to both subjective and potential objective memory issues in SCD.
Methods: To address this gap, task-based imaging studies are essential.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!