Identifying spatially variable genes (SVGs) is critical in linking molecular cell functions with tissue phenotypes. Spatially resolved transcriptomics captures cellular-level gene expression with corresponding spatial coordinates in two or three dimensions and can be used to infer SVGs effectively. However, current computational methods may not achieve reliable results and often cannot handle three-dimensional spatial transcriptomic data. Here we introduce BSP (big-small patch), a non-parametric model by comparing gene expression pattens at two spatial granularities to identify SVGs from two or three-dimensional spatial transcriptomics data in a fast and robust manner. This method has been extensively tested in simulations, demonstrating superior accuracy, robustness, and high efficiency. BSP is further validated by substantiated biological discoveries in cancer, neural science, rheumatoid arthritis, and kidney studies with various types of spatial transcriptomics technologies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10645821PMC
http://dx.doi.org/10.1038/s41467-023-43256-5DOI Listing

Publication Analysis

Top Keywords

spatially variable
8
gene expression
8
three-dimensional spatial
8
spatial transcriptomics
8
spatial
5
dimension-agnostic granularity-based
4
granularity-based spatially
4
variable gene
4
gene identification
4
identification bsp
4

Similar Publications

Benzene degradation under anoxic conditions was first reported more than 25 years ago; however, the activation mechanism in the absence of oxygen remains elusive. Progress has been hindered by the difficulty in cultivating anaerobic benzene-degrading enrichment cultures. Our laboratory has sustained a methanogenic enrichment culture harboring ORM2, a benzene fermenter distinct from any known genus but related to other known or predicted benzene degraders.

View Article and Find Full Text PDF

Clear cell renal cell carcinoma (ccRCC) is one of the most challenging neoplasms because of its phenotypic variability and intratumoral heterogeneity. Because of its variability, ccRCC is a good test bench for the application of new technological approaches to unveiling its intricacies. Multiplex immunofluorescence (mIF) is an emerging method that enables the simultaneous and detailed assessment of tumor and stromal cell subpopulations in a single tissue section.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany.

Background: Lewy body pathology (LBP) is common in autosomal dominant (ADAD) or sporadic Alzheimer disease (sAD). LBP seems to be the most frequent co-pathology in sAD and even in the relatively young ADAD population, where other co-pathologies are rare. Knowledge of neuropathological distribution patterns of LBP and associated survival and genetic characteristics in both AD variants is incomplete.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Mayo Clinic, Jacksonville, FL, USA.

Background: Alzheimer's disease (AD) is heterogeneous in both its clinical and neuropathologic course. Age at onset and distribution of corticolimbic tangles can vary widely among individuals. Genetic risk factors APOE ε4 and MAPT H1 increase AD risk.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

University of Washington, Seattle, WA, USA.

Background: The BRAIN Initiative has stimulated development of novel single cell and spatial molecular approaches to understand human brain structure and function. However, traditional methods for human brain specimen collection, including retrospective archival tissues, have not been optimized for these latest methods. A modernized approach that optimizes tissue quality, anatomical precision, and comprehensive, quantitative neuropathological assessments is needed to maximize the impact of the tremendous investment and remarkable technological advances in human neuroscience research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!