Due to its tumor homing and long serum half-life, albumin is an ideal drug carrier for chemotherapy. For endogenous albumin hitchhiking with high cargo loading, a trimeric albumin-binding domain (ABD), i.e., ABD-Tri is designed by fusing an ABD with high specificity and affinity for albumin to a self-trimerizing domain (Tri) with an additional cysteine residue. ABD-Tri is highly (40 mg L) expressed as soluble and trimeric proteins in Escherichia coli (E. coli). Once mixed together, ABD-Tri rapidly and specifically forms a stable complex with albumin under physiological conditions without obviously changing its receptor- and cell-binding and tumor-homing properties. Maleimide-modified prodrugs are highly effectively conjugated to ABD-Tri to produce homogenous ABD-Tri-prodrugs with triple cargo loading under physiological conditions by thiol-maleimide click chemistry. Unlike the maleimide moiety, which can only mediate time- and concentration-dependent albumin binding, ABD-Tri mediated fast (within several minutes) albumin binding of drugs even at extremely low concentrations (µg mL). Compared to maleimide-modified prodrugs, ABD-Tri-prodrugs exhibit better tumor homing and greater in vivo antitumor effect, indicating that conjugation of chemical drug to ABD-Tri outperforms maleimide modification for endogenous albumin hitchhiking. The results demonstrate that ABD-Tri may serve as a novel platform to produce albumin-binding prodrugs with high cargo-loading capacity for tumor-targeted chemotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202304253 | DOI Listing |
J Colloid Interface Sci
February 2025
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China. Electronic address:
Improving drug delivery efficacy is the key point for enhancing the therapeutic index of medicines. Herein, we report fatty chain conjugated paclitaxel (PTX) prodrugs with a disulfide bond as linker. The formed prodrugs can self-assemble into stable nanoparticles in aqueous solutions, and rapidly transform into long-circulating nanocomplexes via the non-covalent binding to serum albumin in blood, enabling efficient drug delivery and robust antitumor effect.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2024
School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
J Mater Chem B
July 2024
Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
This paper outlines a novel drug delivery system for highly cytotoxic mertansine (DM1) by conjugating to an albumin-binding Evans blue (EB) moiety through a tuneable responsive disulfide linker, providing valuable insights for the development of effective drug delivery systems toward cancer therapy.
View Article and Find Full Text PDFEnviron Sci Technol
June 2024
Department of Chemistry and Biochemistry, University of Minnesota, Duluth, Duluth, Minnesota 55812, United States.
Plastic pollution, a major environmental crisis, has a variety of consequences for various organisms within aquatic systems. Beyond the direct toxicity, plastic pollution has the potential to absorb biological toxins and invasive microbial species. To better understand the capability of environmental plastic debris to adsorb these species, we investigated the binding of the model protein bovine serum albumin (BSA) to polyethylene (PE) films at various stages of photodegradation.
View Article and Find Full Text PDFStimulator of interferon genes (STING) is a promising target for potentiating antitumor immunity, but multiple pharmacological barriers limit the clinical utility, efficacy, and/or safety of STING agonists. Here we describe a modular platform for systemic administration of STING agonists based on nanobodies engineered for hitchhiking of agonist cargo on serum albumin. Using site-selective bioconjugation chemistries to produce molecularly defined products, we found that covalent conjugation of a STING agonist to anti-albumin nanobodies improved pharmacokinetics and increased cargo accumulation in tumor tissue, stimulating innate immune programs that increased the infiltration of activated natural killer cells and T cells, which potently inhibited tumor growth in multiple mouse tumor models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!