Exploration of a Novel Noninvasive Prenatal Testing Approach for Monogenic Disorders Based on Fetal Nucleated Red Blood Cells.

Clin Chem

Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Genetic Testing Center for Deafness, Chinese PLA General Hospital, Beijing 100853, China.

Published: December 2023

Background: Due to technical issues related to cell-specific capture methods, amplification, and sequencing, noninvasive prenatal testing (NIPT) based on fetal nucleated red blood cells (fNRBCs) has rarely been used for the detection of monogenic disorders.

Methods: Maternal peripheral blood was collected from 11 families with hereditary hearing loss. After density gradient centrifugation and cellular immunostaining for multiple biomarkers, candidate individual fetal cells were harvested by micromanipulation and amplified by whole-genome amplification (WGA). Whole-exome sequencing/whole-genome sequencing (WGS) and Sanger sequencing were performed on the identified fNRBCs to determine the fetal genotype. The impact of single-cell and pooled WGA products on the sequencing quality and results was compared. A combined analysis strategy, encompassing whole-exome sequencing/WGS, haplotype analysis, and Sanger sequencing, was used to enhance the NIPT results.

Results: fNRBCs were harvested and identified in 81.8% (9/11) of families. The results of cell-based-NIPT (cb-NIPT) were consistent with those of invasive prenatal diagnosis in 8 families; the coincidence rate was 88.9% (8/9). The combined analysis strategy improved the success of cb-NIPT. The overall performance of pooled WGA products was better than that of individual cells. Due to a lack of alternative fetal cells or sufficient sequencing data, cb-NIPT failed in 3 families.

Conclusions: We developed a novel fNRBC-based NIPT method for monogenic disorders. By combining multiple analysis strategies and multiple fetal cell WGA products, the problem of insufficient genome information in a single cell was remedied. Our method has promising prospects in the field of NIPT for the detection of monogenic disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1093/clinchem/hvad165DOI Listing

Publication Analysis

Top Keywords

monogenic disorders
12
wga products
12
noninvasive prenatal
8
prenatal testing
8
based fetal
8
fetal nucleated
8
nucleated red
8
red blood
8
blood cells
8
detection monogenic
8

Similar Publications

Genomic profiling at a single center cracks the code in inborn errors of immunity.

Intern Emerg Med

January 2025

Unit of Internal Medicine and Clinical Oncology "G. Baccelli", Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro Medical School, Bari, Italy.

Inborn errors of immunity (IEI) entail a diverse group of disorders resulting from hereditary or de novo mutations in single genes, leading to immune dysregulation. This study explores the clinical utility of next-generation sequencing (NGS) techniques in diagnosing monogenic immune defects. Eight patients attending the immunodeficiency clinic and with unclassified antibody deficiency were included in the analysis.

View Article and Find Full Text PDF

Introduction: The most frequent form of diabetes in pediatric patients is polygenic autoimmune diabetes (T1D), but single-gene variants responsible for autoimmune diabetes have also been described. Both disorders share clinical features, which can lead to monogenic forms being misdiagnosed as T1D. However, correct diagnosis is crucial for therapeutic choice, prognosis and genetic counseling.

View Article and Find Full Text PDF

Renovascular hypertension is the second leading cause of hypertension. Twenty-seven genes have been attributed to monogenic renovascular hypertension at present. We present a 15-year-old boy with facial dysmorphism, thick skin and renovascular hypertension with a novel gain-of-function variant in SMAD4 gene suggesting Myhre syndrome.

View Article and Find Full Text PDF

Summary: Short stature is a common complaint among pediatric visits and the differential diagnosis is extensive. Although some variations in growth are normal, deviation from normal growth is often the first symptom of chronic disease in children. This is true for hormone abnormalities including growth hormone deficiency, hypothyroidism and glucocorticoid excess.

View Article and Find Full Text PDF

Purpose: Heterozygous mutations in the insulin gene can give rise to a monogenic diabetes syndrome due to toxic misfolding of the variant proinsulin in the endoplasmic reticulum (ER) of pancreatic β-cells. Clinical mutations are widely distributed in the sequence (86 amino acids). Misfolding induces chronic ER stress and interferes in with wildtype biosynthesis and secretion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!