Various techniques such as data mining, network pharmacology, molecular docking and molecular dynamics simulation were used in this study to screen and validate effective herbal medicines for the treatment of idiopathic pulmonary fibrosis (IPF) and to reveal their mechanisms of action at the molecular level. The use of this approach will provide new tools and ideas for future drug screening, especially for the application of herbal medicines in the treatment of complex diseases. Among them, the five identified core targets, including IL6, TP53, AKT1, VEGFA, and TNF, as well as a series of major active compounds, will be important references for future anti-IPF drug development. This information will accelerate the discovery and development of relevant drugs. Meanwhile, this study further confirmed the potential value of four Chinese herbal medicines, including Gancao, Danshen, Huangqin, and Sanqi, in the treatment of IPF. This will promote more clinical trials and practices to confirm and optimise the application of these herbs. Finally, this study is an important theoretical guide to enhance the advantages of Chinese herbal medicines in the prevention and treatment of major and difficult diseases, as well as to understand and utilise the potential efficacy of Chinese herbal medicines. This will further promote the scientific research and clinical application of herbal medicines and provide more possibilities for future disease treatmentCommunicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2023.2263792DOI Listing

Publication Analysis

Top Keywords

herbal medicines
24
chinese herbal
12
pulmonary fibrosis
8
molecular dynamics
8
dynamics simulation
8
medicines treatment
8
application herbal
8
will promote
8
herbal
6
medicines
6

Similar Publications

Tinospora cordifolia extract exhibits diverse benefits-anti-arthritis, anti-malarial, anti-allergic, anti-diabetic, antihepatotoxic, and antipyretic effects. Its specific anti-inflammatory and healing capacities remain unexplored, prompting a study utilizing a mouse skin wound model and direct T. cordifolia extraction.

View Article and Find Full Text PDF

Detection and characterization of pathogenic Bacillus haynesii from Tribulus terrestris extract: ways to reduce its levels.

Braz J Microbiol

January 2025

Innovation and Drug Discovery, Sava Healthcare Limited, Research Center, MIDC, Block D1, Plot No. 17/6, Chinchwad, Pune, 411019, India.

Plant parts such as roots, bark, leaves, flowers, and fruits that hold ethnopharmacological significance are naturally prone to microbial contamination, influenced by environmental factors like moisture and humidity. This study focuses on assessing the microbial load in the raw material of Tribulus terrestris (TT). The primary bacterium isolated from the pulverized raw material was identified as Bacillus haynesii through 16S rRNA sequencing.

View Article and Find Full Text PDF

Endophytic actinomycetes are potential sources of novel pharmaceutically active metabolites, significantly advancing natural product research. In the present investigation, secondary metabolites from two endophytic actinomycetes, Streptomyces parvulus GloL3, and Streptomyces lienomycini SK5, isolated from medicinal plant taxa, Globba marantina, and Selaginella kraussiana, exhibited broad-spectrum bioactivity. Ethyl Acetate (EA) extract of SK5 showed antimicrobial activity against nine human pathogens, including Methicillin-resistant Staphylococcus aureus (MRSA), Candida tropicalis, and C.

View Article and Find Full Text PDF

Background: Breast carcinoma stands out as the most widespread invasive cancer and the top contributor to cancer-related mortality in women. Nanoparticles have emerged as promising tools in cancer detection, diagnosis, and prevention. In this study, the antitumor and apoptotic capability of silver nanoparticles synthesized through Scrophularia striata extract (AgNPs-SSE) was investigated toward breast cancer cells.

View Article and Find Full Text PDF

Xuefu Zhuyu Decoction (XZD) is widely used in the treatment of cardiovascular diseases. The purpose of this study was to explore the pharmacological effects and molecular mechanisms of XZD in improving hyperlipidemia and to provide a theoretical framework for clinical application. In this study, the signaling pathways regulated by XZD in improving hyperlipidemia were predicted by network pharmacology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!