Herbicides cause oxidative stress in nontarget microorganisms, which may exhibit adaptive responses to substances they have not previously encountered. Nevertheless, it is unclear whether these characteristics occur in bacteria isolated from agricultural soil. Two possible adaptation strategies of Stenotrophomonas sp. CMA26 was evaluated in agricultural soil in Brazil, which is considered stressful due to the intense use of pesticides. The study focused on degradation and antioxidant enzymes in response to the herbicide Heat, which was absent at the isolation site. The results indicated that higher concentrations of herbicide led to more intense stress conditions during the initial periods of growth. This was evidenced by elevated levels of malondialdehyde and peroxide, as well as a significant reduction in growth. Our data show that herbicide degradation is a selection-dependent process, as none of the 35 isolates from the same environment in our collection were able to degrade the herbicide. The stress was controlled by changes in the enzymatic modulation of catalase activity in response to peroxide and glutathione S-transferase activity in response to malondialdehyde, especially at higher herbicide concentrations. This modulation pattern is related to the bacterial growth phases and herbicide concentration, with a specific recovery response observed during the mid phase for higher herbicide concentrations. The metabolic systems that contributed to tolerance did not depend on the specific prior selection of saflufenacil. Instead, they were related to general stress responses, regardless of the stress-generating substance. This system may have evolved in response to reactive oxygen species, regardless of the substance that caused oxidative stress, by modulating of the activities of various antioxidant enzymes. Bacterial communities possessing these plastic tolerance mechanisms can survive without necessarily degrading herbicides. However, their presence can lead to changes in biodiversity, compromise the functionality of agricultural soils, and contribute to environmental contamination through drift.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10645333 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0292967 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!