The spread of invasive alien species is a major threat to biodiversity. Estimating the long-distance dispersal capacity of invasive alien plants is vital for understanding their population dynamics and community composition. We predicted the spatial-temporal distribution of the alien plant Andropogon virginicus, in the Korean peninsula under climate change scenario using Random Forest (RF) and Cellular Automaton (CA) methods. Land use, barriers to dispersal, long-distance dispersal frequency, and maximum long-distance dispersal range were considered in our analysis. Our results showed that, among the five selected environmental variables, annual mean temperature and Human Foot-Printing (HFP) were positively associated with the occurrence probability of A. virginicus. This suggests that A. virginicus is likely to spread to the disturbed northern part of the Korean Peninsula due to climate change and habitat preference. When comparing modeling results for dispersal to field survey data, the modeling raster sets drawn from the long-distance dispersal frequency of 0.05 and maximum long-distance dispersal distance of 30 km y-1 had the most similar spatial expansion among the six long-distance dispersal parameter sets. The dispersal directions were associated with the landscape. Specifically, seeds dispersed by wind (anemochorous seeds) could propagate into open landscapes more easily than in forests. Regarding A. virginicus management, this grass can quickly invade bare ground with their wind-dispersed seeds, therefore habitat destruction, such as excessive logging and weeding, should be restrained.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10645320PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0291365PLOS

Publication Analysis

Top Keywords

long-distance dispersal
28
invasive alien
12
korean peninsula
12
dispersal
10
alien plant
8
plant andropogon
8
andropogon virginicus
8
peninsula climate
8
climate change
8
dispersal frequency
8

Similar Publications

Despite increasing awareness of the threats they pose, exotic species continue to arrive in Antarctica with anthropogenic assistance, some of which inevitably have the potential to become aggressively invasive. Here, we provide the first report of the globally cosmopolitan species (Diptera, Psychodidae; commonly known as moth flies) in Antarctica during the austral summer of 2021/2022, with the identification confirmed using traditional taxonomic and molecular approaches. The species was present in very large numbers and, although predominantly associated with the drainage and wastewater systems of Antarctic national operator stations in synanthropic situations, it was also present in surrounding natural habitats.

View Article and Find Full Text PDF

What little we know about how microbiomes change over the course of host dispersal has been gleaned from simulations or snapshot sampling of microbiomes of hosts undertaking regular, cyclical migrations. These studies suggest that major changes in both microbiome richness and turnover occur in response to long-distance movements, but we do not yet know how rare or sporadic dispersal events for non-migratory organisms might affect the microbiomes of their hosts. Here we directly examine the microbiomes of rafting seaweed, leveraging host genomic analyses, amplicon sequencing, and oceanographic modelling to study the impacts of ecological dispersal of hosts on their microbiomes.

View Article and Find Full Text PDF

Plate tectonics, cold adaptation and long-distance range expansion to remote archipelagos and the high Andes as drivers of a circumantarctic freshwater arthropod radiation.

Mol Phylogenet Evol

December 2024

SNSB-Zoologische Staatssammlung München, Münchhausenstraße 21, D-81247 Munich, Germany; GeoBio-Center, Ludwig-Maximilians-University, Richard-Wagner-Straße 10, D-80333 Munich, Germany.

Disjunct distributions, characterised by spatially separated populations of related species, offer insights into historical biogeographic patterns and evolutionary processes. This study investigates the evolutionary history of the diving beetle subfamily Lancetinae through a phylogenomic approach incorporating ultraconserved elements (UCEs) and heritage genetic markers. Our findings support an early Miocene origin for Lancetinae, with subsequent diversification influenced by historical vicariance events and long-distance dispersal.

View Article and Find Full Text PDF

Background And Aims: Seed dispersal impacts plant fitness by shaping the habitat and distribution of offspring, influencing population dynamics and spatial genetic diversity. Whether the evolution of dispersal strategies varies across herbaceous life forms (annual, perennial, clonal) is inconclusive. This study examines how seed dispersal strategies vary between annual and perennial populations of Mimulus guttatus (syn.

View Article and Find Full Text PDF

Evolutionary consequences of long-distance dispersal in mosquitoes.

Curr Opin Insect Sci

December 2024

Bio21 Institute, School of BioSciences, University of Melbourne, Parkville, Australia. Electronic address:

Long-distance dispersal (LDD) provides a means for mosquitoes to invade new regions and spread adaptive alleles, including those conferring insecticide resistance. Most LDD takes place on human transport vessels and will typically be rarer and more directionally constrained than active flight but can connect populations and regions that are otherwise mutually inaccessible. These features make LDD worthy of specific consideration in mosquito research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!