A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Crowding Effect-Induced Zinc-Enriched/Water-Lean Polymer Interfacial Layer Toward Practical Zn-Iodine Batteries. | LitMetric

Although the meticulous design of functional diversity within the polymer interfacial layer holds paramount significance in mitigating the challenges associated with hydrogen evolution reactions and dendrite growth in zinc anodes, this pursuit remains a formidable task. Here, a large-scale producible zinc-enriched/water-lean polymer interfacial layer, derived from carboxymethyl chitosan (CCS), is constructed on zinc anodes by integration of electrodeposition and a targeted complexation strategy for highly reversible Zn plating/stripping chemistry. Zinc ions-induced crowding effect between CCS skeleton creates a strong hydrogen bonding environment and squeezes the moving space for water/anion counterparts, therefore greatly reducing the number of active water molecules and alleviating cathodic I attack. Moreover, the as-constructed Zn-enriched layer substantially facilitate rapid Zn migration through the NH-Zn-NH binding/dissociation mode of CCS molecule chain. Consequently, the large-format Zn symmetry cell (9 cm) with a Zn-CCS electrode demonstrates excellent cycling stability over 1100 h without bulging. When coupled with an I cathode, the assembled Zn-I multilayer pouch cell displays an exceptionally high capacity of 140 mAh and superior long-term cycle performance of 400 cycles. This work provides a universal strategy to prepare large-scale production and high-performance polymer crowding layer for metal anode-based battery, analogous outcomes were veritably observed on other metals (Al, Cu, Sn).

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.3c10081DOI Listing

Publication Analysis

Top Keywords

polymer interfacial
12
interfacial layer
12
zinc-enriched/water-lean polymer
8
zinc anodes
8
layer
5
crowding effect-induced
4
effect-induced zinc-enriched/water-lean
4
polymer
4
layer practical
4
practical zn-iodine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!