AI Article Synopsis

  • Diabetic kidney disease (DKD) is a major cause of chronic kidney issues globally, highlighting the need for identifying risk factors related to body fat and nutrition in adults with type 2 diabetes (T2DM).
  • A study involving 184 T2DM participants used various biochemical tests and bioelectrical impedance analysis to explore the relationship between body fat clusters and nutritional parameters in relation to DKD.
  • The results showed that individuals with high body fat and poor nutritional markers were significantly more likely to have DKD, indicating that these factors could serve as important indicators of metabolic health in diabetes management.

Article Abstract

Introduction: Diabetic kidney disease (DKD) has become the leading cause of chronic kidney disease and end-stage renal failure in most developed and many developing countries. Strategies aimed at identifying potential modifiable risk factors for DKD are urgently needed. Here, we investigated the association between clusters of body fat and nutritional parameters with DKD in adults with type 2 diabetes mellitus (T2DM).

Methods: This was a cross-sectional study of 184 participants with T2DM. Biochemical parameters including fasting blood glucose, hemoglobin A1c, hemoglobin, albumin, creatinine, and urinary albumin-to-creatinine ratio (UACR) were measured. The data for percentage of body fat mass (PBF), visceral fat area (VFA), phase angle at 50 kHz (PA50), and body cell mass (BCM) were obtained by bioelectrical impedance analysis (BIA). DKD was diagnosed by UACR and estimated glomerular filtration rate. Factor analysis was used for dimensionality reduction clustering among variables. The association of clusters with the presence of DKD was assessed using binary logistic regression analysis.

Results: Factor analysis identified two clusters which were interpreted as a body fat cluster with positive loadings of VFA, body mass index, waist circumstance, and PBF and a nutritional parameters cluster with positive loadings of PA50, hemoglobin, BCM, and albumin. Participants were divided into the four groups based on the sex-specific cutoff value (median) of each cluster score calculated using the cluster weights and the original variable values. Only participants with high body fat and poor nutritional parameters (OR 3.43, 95% CI 1.25-9.42) were associated with increased odds of having DKD.

Conclusion: Body fat and nutritional parameters were strongly associated with and considerably contributed to the presence of DKD, suggesting that body fat and nutrition might be promising markers representing metabolic state in pathogenesis of DKD and clinical utility of BIA might provide valuable recommendations to patients with T2DM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10786782PMC
http://dx.doi.org/10.1007/s13300-023-01502-5DOI Listing

Publication Analysis

Top Keywords

body fat
28
nutritional parameters
20
fat nutritional
12
kidney disease
12
clusters body
8
fat
8
parameters associated
8
diabetic kidney
8
adults type 2
8
type 2 diabetes
8

Similar Publications

Weight cycling exacerbates glucose intolerance and hepatic triglyceride storage in mice with a history of chronic high fat diet exposure.

J Transl Med

January 2025

Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.

Background: Obese subjects undergoing weight loss often fear the Yoyo dieting effect, which involves regaining or even surpassing their initial weight. To date, our understanding of such long-term obesity and weight cycling effects is still limited and often based on only short-term murine weight gain and loss studies. This study aimed to investigate the long-term impacts of weight cycling on glycemic control and metabolic health, focusing on adipose tissue, liver, and hypothalamus.

View Article and Find Full Text PDF

Wu-Mei-Wan enhances brown adipose tissue function and white adipose browning in obese mice via upregulation of HSF1.

Chin Med

January 2025

Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.

Background: This research aims to explore the anti-obesity potential of Wu-Mei-Wan (WMW), particularly its effects on adipose tissue regulation in obese mice induced by a high-fat diet (HFD). The study focuses on understanding the role of heat shock factor 1 (HSF1) in mediating these effects.

Methods: HFD-induced obese mice were treated with WMW.

View Article and Find Full Text PDF

Background: mHealth, i.e. mobile-health, strategies may be used as a complement to regular care to support healthy dietary habits in primary care patients.

View Article and Find Full Text PDF

Background: Obesity and metabolic syndrome are major public health concerns linked to cognitive decline with aging. Prior work from our lab has demonstrated that short-term high fat diet (HFD) rapidly impairs memory function via a neuroinflammatory mechanism. However, the degree to which these rapid inflammatory changes are unique to the brain is unknown.

View Article and Find Full Text PDF

The effects of the gut bacterial product, gassericin A, on obesity in mice.

Lipids Health Dis

January 2025

Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.

Background: Obesity can arise from various physiological disorders. This research examined the impacts of the bacteriocin, gassericin A, which is generated by certain gut bacteria, using an in vivo model of obesity.

Methods: Fifty Swiss NIH mice were randomly assigned to five different groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!