Non-heme diiron enzymes activate O for the oxidation of substrates in the form of peroxo FeIII2 or high-valent FeIV2 intermediates. We have developed a dinucleating bis(tetradentate) ligand system that stabilizes peroxo and hydroperoxo FeIII2 complexes with terminal 6-methylpyridine donors, while the peroxo FeIII2 intermediate is reactive with terminal pyridine donors presumably conversion to a fluent high-valent FeIV2 intermediate. We present here a derivative with electron-donating methoxy substituents at the pyridine donors and its diferric complexes with an {FeX(μ-O)FeX} (X = Cl, OAc, and OH) or an {Fe(μ-O)(μ-OAc)Fe} core. The complex-induced oxidation of EtOH with HO provides μ-OAc, and in acetone, the complex with mixed OH/OAc exogenous donors is obtained. Both reactivities indicate a reactive fluent peroxo FeIII2 intermediate. The coupling constant and the LMCT transitions are insensitive to the nature of the directly bound ligands X and reflect mainly the electronic structure of the central {Fe(μ-O)Fe} core, while Mössbauer spectroscopy and d-d transitions probe the local Fe sites. The remote methoxy substituents decrease the potential for the oxidation to Fe by ∼100 mV, while directly bound OH in {Fe(OH)(μ-O)Fe(OH)} with a short 1.91 Å Fe-O bond decreases the potential by 590 mV compared to {Fe(OAc)(μ-O)Fe(OAc)} with a 2.01 Å Fe-O bond. Interestingly, this Fe-OH bond is even shorter (1.87 Å) in the mixed OH/OAc complex but the potential is the mean value of the potentials of the OH/OH and OAc/OAc complexes, thus reflecting the electron density of the central {Fe(μ-O)Fe} core and not of the local Fe-OH unit.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3dt02734a | DOI Listing |
Dalton Trans
November 2023
Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany.
Non-heme diiron enzymes activate O for the oxidation of substrates in the form of peroxo FeIII2 or high-valent FeIV2 intermediates. We have developed a dinucleating bis(tetradentate) ligand system that stabilizes peroxo and hydroperoxo FeIII2 complexes with terminal 6-methylpyridine donors, while the peroxo FeIII2 intermediate is reactive with terminal pyridine donors presumably conversion to a fluent high-valent FeIV2 intermediate. We present here a derivative with electron-donating methoxy substituents at the pyridine donors and its diferric complexes with an {FeX(μ-O)FeX} (X = Cl, OAc, and OH) or an {Fe(μ-O)(μ-OAc)Fe} core.
View Article and Find Full Text PDFDalton Trans
June 2021
Research Group of Bioorganic and Biocoordination Chemistry, University of Pannonia, H-8200 Veszprém, Hungary.
The complex [FeIII2(μ-O2)(L3)4(S)2]4+ (L3 = 2-(4-thiazolyl)benzimidazole, S = solvent) forms upon reaction of [FeII(L3)2] with H2O2 and is a functional model of peroxo-diiron intermediates invoked during the catalytic cycle of oxidoreductases. The spectroscopic properties of the complex are in line with those of complexes formed with N-donor ligands. [FeIII2(μ-O2)(L3)4(S)2]4+ shows both nucleophilic (aldehydes) and electrophilic (phenol, N,N-dimethylanilines) oxidative reactivity and unusually also electron transfer oxidation.
View Article and Find Full Text PDFDalton Trans
February 2020
Department of Chemistry, University of Pannonia, H-8201 Veszprém, Hungary.
The reactivity of the previously reported peroxo-adduct [FeIII2(μ-O)(μ-1,2-O2)(IndH)2(solv)2]2+ (1) (IndH = 1,3-bis(2-pyridyl-imino)isoindoline) has been investigated in nucleophilic (e.g., deformylation of alkyl and aryl alkyl aldehydes) and electrophilic (e.
View Article and Find Full Text PDFJ Biol Inorg Chem
September 2016
Department of Chemistry, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, 34141, Republic of Korea.
Binuclear non-heme iron enzymes activate O2 to perform diverse chemistries. Three different structural mechanisms of O2 binding to a coupled binuclear iron site have been identified utilizing variable-temperature, variable-field magnetic circular dichroism spectroscopy (VTVH MCD). For the μ-OH-bridged Fe(II)2 site in hemerythrin, O2 binds terminally to a five-coordinate Fe(II) center as hydroperoxide with the proton deriving from the μ-OH bridge and the second electron transferring through the resulting μ-oxo superexchange pathway from the second coordinatively saturated Fe(II) center in a proton-coupled electron transfer process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!