Alcoholamine enhanced fractionation of cellulose from lignocellulosic biomass in ionic liquids.

Phys Chem Chem Phys

Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), 100083, China.

Published: November 2023

Ionic liquid based technology is promising in the pretreatment of lignocelluloses. More efforts are still being made to intensify the separation of the main components in this biomass and to inhibit biopolymer degradation, especially in the fabrication of functional materials where excellent mechanical properties are often requisite. In this study, additives with amino and/or hydroxyl groups were proposed to improve the dissolution of lignocellulosic biomass in ionic liquids and to inhibit the degradation of cellulose. Among the tested additives (, urea, L-2-aminobutyric acid, DL-aminopropanol, 3-aminopropanol and ethanolamine), 3-aminopropanol showed the best performance in enhancing wheat straw dissolution and cellulose recovery in 1-ethyl-3-methylimidazolium acetate ([EMIM]Ac). Further study revealed that this additive could also inhibit cellulose degradation in [EMIM]Ac. The interactions between the ionic liquid and additive were revealed by NMR and IR analysis. It was found that the formation of hydrogen bonds between 3-aminopropanol and [EMIM]Ac changed the interactions between ionic liquids and biomass, resulting in improved dissolution efficiency and inhibition of cellulose degradation. Optimization investigation showed that when using the 3-aminopropanol/[EMIM]Ac composite system as the solvent and pine as the raw biomass, the cellulose content in the recovered cellulose-rich material was increased from 33.3% (for the raw pine) to 66.9%. Correspondingly, the regenerated cellulose spinning in the composite system exhibited improved mechanical properties, with the elongation at break reaching 15.6% and the tensile fracture strength of 184.1 N per tex (in comparison with 9.6% for elongation at break and 99.7 N per tex for tensile fracture strength for the sample obtained in neat [EMIM]Ac).

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp01757eDOI Listing

Publication Analysis

Top Keywords

ionic liquids
12
lignocellulosic biomass
8
biomass ionic
8
ionic liquid
8
mechanical properties
8
cellulose degradation
8
interactions ionic
8
composite system
8
elongation break
8
tensile fracture
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!