A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biofortification to improve food security. | LitMetric

Biofortification to improve food security.

Emerg Top Life Sci

Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa.

Published: December 2023

Crop biofortification has significantly progressed in the last few decades. The first biofortification success was quality protein maize, leading to double the amount of the essential amino acids lysine and tryptophan. This was followed by biofortification of staple crops such as maize, wheat, rice, legumes and cassava for nutrients such as Fe and Zn and provitamin A. These crops have reached millions of households, especially in the developing regions of the world. The development and release of these biofortified crops through conventional breeding generally took 8-10 years. To speed up the process, molecular markers, genome-wide association studies and genomic selection have been incorporated into breeding efforts. Genetic engineering has the potential to increase the efficiency of crop biofortification through multi-nutrient biofortification in a short timespan and to combine biofortification with climate resilience. Regulatory issues still prevent the dissemination of genetically modified crops in many countries. This could be overcome by CRISPR-Cas-mediated genome editing, as it seems that many countries will regulate products of genome editing less strictly than transgenic crops. Effective policies on national or regional level are needed for the sustainable production of biofortified crops. The availability of affordable quality biofortified seed and other inputs should be ensured through local seed systems, which will increase the production and adoption of biofortified crops. There is scope to expand the crops and the range of nutrients for biofortification. Genetic engineering should be combined with conventional breeding as a approach for future improvement of multi-nutrient crops.

Download full-text PDF

Source
http://dx.doi.org/10.1042/ETLS20230066DOI Listing

Publication Analysis

Top Keywords

biofortified crops
12
crops
9
biofortification
8
crop biofortification
8
conventional breeding
8
genetic engineering
8
genome editing
8
biofortification improve
4
improve food
4
food security
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!