Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Crop biofortification has significantly progressed in the last few decades. The first biofortification success was quality protein maize, leading to double the amount of the essential amino acids lysine and tryptophan. This was followed by biofortification of staple crops such as maize, wheat, rice, legumes and cassava for nutrients such as Fe and Zn and provitamin A. These crops have reached millions of households, especially in the developing regions of the world. The development and release of these biofortified crops through conventional breeding generally took 8-10 years. To speed up the process, molecular markers, genome-wide association studies and genomic selection have been incorporated into breeding efforts. Genetic engineering has the potential to increase the efficiency of crop biofortification through multi-nutrient biofortification in a short timespan and to combine biofortification with climate resilience. Regulatory issues still prevent the dissemination of genetically modified crops in many countries. This could be overcome by CRISPR-Cas-mediated genome editing, as it seems that many countries will regulate products of genome editing less strictly than transgenic crops. Effective policies on national or regional level are needed for the sustainable production of biofortified crops. The availability of affordable quality biofortified seed and other inputs should be ensured through local seed systems, which will increase the production and adoption of biofortified crops. There is scope to expand the crops and the range of nutrients for biofortification. Genetic engineering should be combined with conventional breeding as a approach for future improvement of multi-nutrient crops.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/ETLS20230066 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!