Endovascular embolization using microcoils can be an effective technique to treat artery aneurysms. However, microcoils with fixed designs are difficult to adapt to all aneurysm types. In this paper, a photocurable ultratough shape memory organogel with a curing time of only 2 s and megapascal-level mechanical properties is proposed. Then, it is used to manufacture the personalized 4D microcoil with a wire diameter of only 0.3 mm. The improved mechanical modulus (511.63 MPa) can reduce the possibility of microcoils' fracture during embolization. Besides, the fast body-temperature-triggering shape memory ability makes the 4D microcoil applicable in vivo. These 4D microcoils are finally delivered into the rabbit, and successfully blocked the blood flow inside different aneurysms, with neoendothelial cells and collagen fibers growing on the microcoil surface snugly, indicating full aneurysm recovery. This 4D organogel microcoil can potentially be used in personalized clinical translation on human beings.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202308130DOI Listing

Publication Analysis

Top Keywords

photocurable ultratough
8
endovascular embolization
8
shape memory
8
preshaped photocurable
4
ultratough organogel
4
microcoils
4
organogel microcoils
4
microcoils personalized
4
personalized endovascular
4
embolization endovascular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!